
BiQu: Stair Climbing Robot Dog

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Robotics Engineering,
Computer Science

By:

Wyatt Harris
Adam Kalayjian
Sean Lendrum
Jared Morgan
Kai Nakamura
Owen Sullivan

Project Advisors:

Agheli Hajiabadi, Mohammad Mahdi
Jing Xiao

Guanrui Li

Date: April 30, 2025

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI,
see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects


Abstract

Legged robots are designed to tackle environments where wheels would otherwise fail. Quadrupedal
robots, or “robot dogs,” offer unique advantages in stability over humanoid, bipedal robots. Developments
from organizations like Boston Dynamics and Unitree demonstrate wide applications for quadrupeds like
inspection, surveying, logistics, etc. However, complex terrains that require precision, like stairs, still remain
difficult. This work presents a comprehensive framework for real-time stair climbing, integrating terrain
perception, footstep planning, and contact estimation. It utilizes LiDAR for SLAM, improving odometry
and reducing map drift. Hardware upgrades expand robot capabilities, and novel integration of mapping
confidence values improves terrain interaction. A dynamic footstep planner maps footholds onto convex
planes, providing initial guesses to speed up trajectory optimization. Contact estimation combines foot
height, force, gait timing, and terrain data, which improves robustness on challenging terrains. Validated
on the Unitree Go1, this framework demonstrates capability in navigating stairs, showcasing suitability for
complex environments.

Figure 1: Unitree Go1 climbing stairs around the WPI campus (multiple frames combined)

i



Acknowledgments

The BiQu team would like to thank our project advisors, Professor Agheli, Professor Xiao, and
Professor Li whose guidance and support were invaluable throughout the project’s development. Additionally,
we would like to thank our sponsors, Unitree Robotics and MathAltitude School of Mathematics, whose
contributions and belief in our vision made our project possible. Lastly, we would also like to thank Ethan
Chandler, Akshay Jaitly, and the rest of the 2024 BiQu team for their mentorship and dedication.

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Robot-Centric Elevation Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1.1 Map Cell Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1.2 GPU Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 SLAM in Combination with Robot-Centric Elevation Mapping . . . . . . . . . . . . . 5
2.1.3 Perceptive Locomotion Implementation on the Go1 . . . . . . . . . . . . . . . . . . . . 6

2.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Footstep Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Trajectory Optimizer for Walking Robots (TOWR) . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Nonlinear Programming Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Contact Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Design and Implementation 16

3.1 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 System Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Hardware Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Wireless Hardware Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Hardware Mounting Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Elevation Mapping Fusion and Sensor Integration . . . . . . . . . . . . . . . . . . . . . 20
3.3.5 Improving Odometry Using LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.6 Exposed Region Data for MPC Integration . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



3.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Footstep Plan Optimizer for Walking Robots (FPOWR) . . . . . . . . . . . . . . . . . 26

3.4.1.1 Heightmap Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1.2 Output Plane Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1.3 ROS Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1.4 Using Initial Guesses for MPC Speedup . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Contact Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2.1 Force Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2.2 Kalman Prediction - Gait Timing . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2.3 Kalman Update - Foot Height and Force . . . . . . . . . . . . . . . . . . . . 34
3.4.2.4 Kalman Update - Foot Sensor Force . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Perception-Aware Contact Estimation (PACE) . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results and Discussion 39

4.1 Perception Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Drift Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Sensor Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Usage of GPU Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Footstep Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Contact Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2.2 On-Robot Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Stair Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusions 59

6 Future Work 61

iv



6.1 FPOWR Integration with Galileo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 FPOWR Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Retrospective SLAM Fusion with Time-Offset Compensation . . . . . . . . . . . . . . . . . . 63

6.4 Usage of Internal Robot Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Perception-Aware Contact Estimation (PACE) . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References 66

v



List of Tables

3.1 Comparison of Livox Mid-360[1] and Intel RealSense D435i[2] specifications . . . . . . . . . . 18

vi



List of Figures

1 Unitree Go1 climbing stairs around the WPI campus (multiple frames combined) . . . . . . . i

1.1 Example of a quadruped robot from ANYbotics climbing stairs [3] . . . . . . . . . . . . . . . 1
1.2 Unitree Go1 robot with attached Livox Mid-360, Intel NUC, and onboard battery . . . . . . 2

2.1 Example simulated environment using ANYbotics Elevation Mapping [4, 5] and ETH Zürich
Convex Plane Decomposition [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Illustration of geometric footstep planner from [3] . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 System Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adjustable LiDAR mount solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Stable LiDAR solution at slant of 22 degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Final LiDAR mount using stable 22 degree slant . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Proposed Updated Perception Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 FPOWR Example Trajectory and Footstep Plan . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Example Usage of FPOWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Experimental mounting setup of Livox Mid-360, Intel NUC i7 11th gen, and power supply on
the Unitree Go1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Comparison between the filtered front-facing point cloud used for elevation mapping and the
full 360° point cloud used as input to FAST-LIO2 . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Solve times for Mumps, HSL57, and HSL97 on flat ground and stairs, and with and without
gait optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Resultant trajectory from HSL-MA57 after commanding the robot forwards 1m on flat ground
in 2s with gait optimization. A video can be seen here. . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Resultant trajectory from HSL-MA57 after commanding the robot to climb 1, 7” step in 2s
with gait optimization. A video can be seen here. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Raw input vs. low-pass filtered input with 5 Hz cutoff frequency. . . . . . . . . . . . . . . . . 47
4.7 Raw input vs. low-pass filtered input with 15 Hz cutoff frequency. . . . . . . . . . . . . . . . 47
4.8 Raw input vs. low-pass filtered input with 100 Hz cutoff frequency. . . . . . . . . . . . . . . . 48
4.9 Raw input vs. low-pass filtered input with 500 Hz cutoff frequency. . . . . . . . . . . . . . . . 48
4.10 Contact estimation from the generalized momentum observer vs ground truth . . . . . . . . . 49
4.11 Contact estimation and its component parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii

https://youtu.be/IgPRqs3JzQA
https://youtu.be/Kz3hbKJc6Cs


4.12 Contact estimation of a front leg when going up stairs without vision . . . . . . . . . . . . . . 51
4.13 Contact estimation of a back leg when going up stairs without vision . . . . . . . . . . . . . . 51
4.14 Contact estimation of a front leg going up stairs with vision . . . . . . . . . . . . . . . . . . . 52
4.15 Force estimation real robot with 15 HZ cutoff frequency . . . . . . . . . . . . . . . . . . . . . 53
4.16 Robot lights when there is no contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.17 Robot lights when contact is nearly made . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.18 Robot lights when both legs are in contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.19 Robot lights when contact has been lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.20 The foot force sensors compared against the proprioceptive force estimation . . . . . . . . . . 55
4.21 Comparison of final trial setups. From left to right: single full-stair platform, multiple half-

stair platforms, two half-height sequential platforms, and two full-height steps. . . . . . . . . 56

6.1 Proposed Control and Perception Hierarchy of the Go1 . . . . . . . . . . . . . . . . . . . . . . 62
6.2 TOWR robot model. Shows single rigid body dynamics, foot friction cones, and range of

motion constraints overlaid on the ANYmal model for example purposes. [7] . . . . . . . . . 64

viii



Chapter 1

Introduction

1.1 Motivation

Legged robots offer significant advantages over traditional wheeled robots for their inherent adapt-

ability and agility. They are capable of navigating complex environments that would otherwise be impossible

for robots with wheels or treads to overcome. Stair climbing is a fundamental requirement for robots op-

erating in human-centric environments, yet it remains a challenging problem due to the need for precise

coordination and adaptability. As underactuated systems, legged robots require more complex methods to

effectively manage their movements and maintain stability [8].

In recent years, companies like Boston Dynamics, ANYbotics, and Unitree have made significant

strides in advancing the capabilities of legged robots, including complex tasks like stair climbing (Figure 1.1).

Our project introduces a unique pipeline that leverages novel methods in perception and control, enabling

enhanced robustness and computational efficiency.

Figure 1.1: Example of a quadruped robot from ANYbotics climbing stairs [3]

1



1.2 Problem Statement

Our project aimed to achieve live climbing of full-sized human stairs on a Unitree Go1 quadruped

robot (Figure 1.2). By live climbing, we mean that the robot has no prior knowledge of the terrain; trajecto-

ries and terrain maps are generated online. The full-sized stairs are 7 inches tall (about 30% of the Unitree

Go1’s leg length) and the steps will be parallel with the ground.

We chose the height of 7 inches because it is the height of a standard, human-sized stair. Also

notably, the Unitree Go1’s built-in “stair climbing” mode struggles with elevation changes greater than 6

inches [9]. The built-in controller simply walks with a gait where the legs are lifted higher than normal.

However, achieving stairs with heights of 7 inches and taller with the Unitree Go1 is feasible with improved

perception and trajectory planning.

The previous 2024 BiQu team achieved steps of around 2 inches tall onto large foam mats. Our

project aims to achieve live climbing of full-sized 7-inch stairs in a robust and computationally efficient

manner.

Figure 1.2: Unitree Go1 robot with attached Livox Mid-360, Intel NUC, and onboard battery

2



Chapter 2

Background

2.1 Perception

Effective perceptive locomotion is essential for quadrupedal robots to navigate unpredictable and

dynamic terrains, where precise foothold placement directly impacts stability and efficiency. Perceptive

locomotion integrates sensory information to handle the complexities in these environments. Current per-

ceptive locomotion strategies include static gaits [10] or learning-based controllers [11]. Although due to

incomplete perceptive data and dynamic constraints, there are significant challenges in efficiently optimizing

footholds over rough terrain [6]. Although some strategies, [12], hierarchically calculate footholds before

torso positioning, [6] uses a non-linear model predictive controller that optimizes over all degrees of freedom.

[6] streamlines foothold optimization by simplifying terrain into primitive geometry and utilizing a signed-

distance-field for obstacle avoidance. Additionally, [13] and [14] use deep-learning techniques to optimize the

vision pipeline and foothold optimization, respectively.

2.1.1 Robot-Centric Elevation Mapping

Robot-centric elevation mapping focuses on dynamically maintaining a 2.5D elevation map relative

to the robot’s frame [6] (Figure 2.1). This approach minimizes reliance on precise global localization by

leveraging onboard sensors, such as depth cameras or LiDAR, to directly represent terrain geometry relative

to the robot. The current system uses odometry informed primarily by proprioceptive sensors—such as

IMUs, joint encoders, and force sensors—to estimate the robot’s pose. Then, the uncertainty of the pose

of the robot and the sensor readings are incorporated into the resulting elevation map. While this reduces

3



Figure 2.1: Example simulated environment using ANYbotics Elevation Mapping [4, 5] and ETH Zürich
Convex Plane Decomposition [6]

dependency on external localization systems, future implementations could integrate SLAM for enhanced

odometry accuracy.

The perception pipeline includes several key stages:

• Filtering and Inpainting: Noise reduction and gap filling in the elevation data.

• Steppability Classification: Classifying terrain regions based on slope and local geometry as step-

pable or non-steppable.

• Plane Segmentation: Extracting convex plane regions that can be used as feasible footholds.

• Signed Distance Field (SDF): Precomputing distances from robot parts to nearby terrain for

collision avoidance.

The Elevation Mapping package by ANYbotics enables elevation mapping and convex plane de-

composition using a variety of sensors [4, 5]. We utilize this module to enable perceptive locomotion on the

Unitree Go1.

2.1.1.1 Map Cell Updates

In the elevation mapping process, the cell heights and individual cell variances are updated for each

new sensor reading with the following linear kalman filter:

h =
σ2
ph+ σ2

mpz

σ2
m + σ2

p

(2.1)

σ2
m =

σ2
mσ2

p

σ2
m + σ2

p

(2.2)

4



where h represents the estimated cell height, σ2
m is the elevation map cell variance, σ2

p is the sensor noise

variance, and pz is the measured height [4].

Then, ray casting is performed to account for dynamic obstacles by comparing the final height of

rays cast by the sensor to the estimated elevation of that cell.

2.1.1.2 GPU Acceleration

In [4], the authors describe how this elevation mapping process can be accelerated with a GPU.

The height update can be processed for each point at the same time instead of iteratively. Similarly, the ray

casting step can also be processed for each ray simultaneously. Finally, they also keep this processed data in

the GPU to run a traversability filter, which is important for foothold selection. Finally, the elevation map

is sent back to the CPU and converted to a ROS message at a rate selected by the user.

[4] measures the performance of the elevation mapping node by measuring its point cloud processing

time. They analyzed the processing time performance with the Jetson Xavier, both with and without GPU

acceleration. They found that for a smaller point cloud, about 10% of the size a D435i would normally

record, processing time was about 30 ms without GPU acceleration and about 4 ms with GPU acceleration.

Using a point cloud of about the same size as a D435i would capture, processing time was about 25 ms

with GPU acceleration and 175 ms without. The GPU acceleration seems to make a larger impact when

processing larger point clouds. Although, using cropping and down-sampling filters could potentially reduce

the need for GPU acceleration.

2.1.2 SLAM in Combination with Robot-Centric Elevation Mapping

Simultaneous localization and mapping (SLAM) can be used to improve the odometry estimates of

autonomous robots. Using information from LiDAR sensors in conjunction with odometry can negate the

cumulative drift that occurs when only using odometry. Information from the LiDAR generates a feature

map, which can then be used to determine the location of the robot and correct drift from the state estimator

[15]. A fast enough elevation mapping module may be able to overcome state estimation drift on its own [6],

but some pipelines opt to utilize SLAM in combination with elevation mapping to overcome drift [16]. The

setup shown in [16] utilizes LiDAR and depth camera sensors to collect information from its surroundings.

Using both LiDAR and depth cameras allows the LiDAR to collect vast amounts of information useful for

SLAM, while the depth camera can provide detailed information directed at key areas. There are many

examples using both of these sensors, notably many setups with the Unitree Go2 [17, 18]. Since we have

5



access to both a LiDAR and depth camera, SLAM is a promising element that could be used to reduce the

drift of state estimation. Additionally, [4] uses an Extended Kalman Filter that combines odometry data

from the robot IMU and SLAM output, while using a time offset to ensure that no discrepancies occur.

There are many available 3D SLAM packages to choose from, one of the most popular is RTAB-map

for its general purpose scope [19]. It provides many different features, including SLAM for the purpose of

taking a 3D point cloud to improve odometry estimates. Despite the popularity of RTAB-map, it is shown to

be slower than many similar packages such as FAST-LIO [20] or Google’s Cartographer [21]. These two are

more comparable in real-time performance, and are more commonly used in the context of robotics, where

computational power is limited. In [16], they utilize a version of FAST-LIO, FAST-LIO2 [22], to achieve an

overall perception pipeline refresh rate of about 20 Hz, which is also the refresh rate that we are targeting.

FAST-LIO2 [22] is a fast and efficient LiDAR-inertial odometry framework designed to improve

accuracy and computational speed in SLAM tasks. Unlike methods that rely on extracting features like

edges and planes from LiDAR data, FAST-LIO2 directly registers raw point cloud data to a global map.

This direct method improves accuracy, especially in environments that lack distinct features, and eliminates

the need for hand-tuning parameters. To manage the large amount of point cloud data efficiently, FAST-LIO2

introduces the ikd-Tree, an incremental k-d tree structure that allows for fast insertion, deletion, and dynamic

rebalancing of map points. The module uses a tightly-coupled iterated Kalman filter to fuse IMU and LiDAR

data, compensating for motion distortion and maintaining accurate state estimation. By combining direct

point registration with ikd-Tree-based mapping, FAST-LIO2 achieves high-frequency updates (up to 100

Hz) with low computational load, making it best for real-time applications like ours. For these reasons, we

decided to utilize FAST-LIO2 for SLAM.

2.1.3 Perceptive Locomotion Implementation on the Go1

The previous 2024 BiQu team implemented perceptive locomotion on the Unitree Go1 by integrating

mapping, planning, and control modules in both simulation and hardware. Using ROS Noetic and Gazebo,

they employed Qiayuan Liao’s legged control framework [23] alongside the ANYbotics Elevation Mapping

package. The pipeline facilitated real-time elevation mapping, convex plane segmentation, and foothold

optimization, both in simulation and on the subsequently acquired Go1 robot. A RealSense D435i depth

camera was used to capture terrain data, with the convex planes informing foothold planning. The team

identified challenges such as map drift due to a 17 Hz update rate, which was below the recommended 20

Hz, and limited camera perspectives in complex environments.

6



On the physical robot, the perceptive stack was deployed with the D435i and a high-performance

Intel NUC for real-time processing. Liao’s legged framework was modified to incorporate filtered foot force

sensor readings, enhancing locomotion stability. However, the camera’s limited field-of-view constrained

mapping of elevated surfaces.

This previous work established a framework for active perception and robust locomotion with the

Go1, forming a solid foundation for future improvements. This year’s work focuses on improving terrain

representation by reducing odometry drift with FAST-LIO2, incorporating additional sensors, and improving

elevation mapping fusion methods.

2.2 Control

Existing control systems for quadrupedal systems largely operate using multiple control layers

formed together in a pipeline. Current control pipelines sometimes begin with an offline trajectory planner

that solves for an optimal series of contact forces over an entire motion [24]. In [25], the pipeline connects

an offline trajectory optimization program to a whole body controller (WBC) directly. In [24], the generated

trajectory is connected through a model predictive controller (MPC) that continually combines the proposed

trajectory with execution over a limited time horizon. Some pipelines omit offline planning in favor of a

model predictive controller into a whole body controller based on data about the terrain fed into the model

predictive controller [3, 26]. Others still use mixed integer optimization to solve the trajectory using binary

representations of the foot contacts [27, 28].

2.2.1 Trajectory Optimization

Trajectory optimization is essential for controlling highly dynamic systems with simple objective

functions [8]. Trajectory optimization methods are used to find the best trajectory choice, usually by selecting

inputs to the system (i.e., controls) as functions of time [29]. The trajectory describes the system’s path,

including state and control as functions of time. It involves formulating an optimization problem where the

objective is to minimize a cost function subject to some constraints, such as the system’s dynamic equations

and kinematic feasibility. In the context of legged robotics, trajectory optimization enables the generation of

efficient and feasible paths for the robot to follow that adhere to various constraints such as actuator limits,

robot dynamics, and terrain collision.

Model predictive control (MPC) is a common method for turning trajectory optimization into

7



a feedback policy [8]. The steps are straightforward:

• Measure the current state

• Optimize a trajectory from the current state to some goal state

• Execute the first control input from the optimized trajectory

• Let the system dynamics evolve for one iteration and repeat

A critical part of all trajectory optimization problems is transcription, which is the process of turn-

ing the original trajectory optimization problem into an easier-to-solve constrained parameter optimization

problem [29]. In the original trajectory optimization problem, decision variables are vector functions that are

difficult to optimize over, but in the constrained parameter optimization problem, the decision variables are

all real numbers that are easier to optimize over. Additionally, the original trajectory optimization problem

can contain differential and integral terms which makes it harder to solve than a constrained parameter

optimization problem.

Transcription methods can largely be categorized into two groups: direct methods and indirect

methods [29]. Direct methods discretize the trajectory optimization and convert it into a non-linear

program, a specially constrained parameter optimization problem that has non-linear terms in the objective

or constraint functions. These non-linear programs can then be optimized using a non-linear program solver,

common choices include the sequential-quadratic programming (SQP) solver SNOPT [30] or the interior-point

solver IPOPT [31] (See Section 2.2.4 for more details). Indirect methods instead start by formulating the

mathematical conditions for optimality analytically. After this, they discretize the conditions and solve them

numerically. So in short, direct methods discretize and then optimize, whereas indirect methods optimize

and then discretize [29]. Indirect methods are more accurate and have less error when compared to direct

methods; however, they also have some drawbacks. Indirect methods have a small region of convergence,

which requires better initialization, and setting up the problem analytically can be challenging [32]. For

these reasons, direct methods are generally better suited for the control of legged robots.

Transcription methods can also be characterized as shooting methods or collocation methods.

Shooting methods are fundamentally based on simulation. Discretization of the trajectory optimiza-

tion problem is done through explicit integration methods. The next state of the system is calculated based

on the previous state of the system and its dynamic equations. Collocation methods, on the other hand,

are fundamentally based on function approximations. Discretization of the optimization problem is handled

with implicit integration methods. One approach to collocation is to split the trajectory into piecewise

8



polynomial functions or splines [8, 29]. Another approach is to use a single high-order polynomial to ap-

proximate the trajectory as a whole, this is called pseudospectral collocation (or orthogonal collocation)

[8, 29]. Pseudospectral collocation solves globally over the entire trajectory, over both the state and controls

simultaneously. While this makes implementation more difficult, it improves stability and accuracy when

compared to other methods [33].

2.2.2 Footstep Planners

State-of-the-art trajectory optimization libraries typically optimize over fixed footstep contact se-

quences [34]. The purpose of a footstep planner is to find a list of feasible footstep locations that create a

path through a constrained environment [27].

One method is to use a geometrical approach, as implemented by [3]. Firstly, the current position

and orientation of the robot are determined by its current foot positions. An interpolation between the

current pose and the goal pose with a default step size creates a path of stances to follow. A predetermined

leg sequence is used to move the legs one by one to the positions of the next stance (Figure 2.2). The major

benefits of this approach are that it has fast computation and easy implementation. However, footstep

locations are only locally optimized.

Figure 2.2: Illustration of geometric footstep planner from [3]

Another approach to footstep planning is to use mixed-integer programming (MIP), which is

an optimization technique used to solve problems that involve both continuous and discrete variables. In

[27], the problem is formulated as a single mixed-integer convex optimization, specifically a mixed-integer

quadratically constrained quadratic problem (MIQCQP). This allows solving for a global optimal solution.

Integer variables are used to absorb non-convex constraints. For example, solving for the orientation of

9



footstep placements depends on trigonometric functions (i.e., sine and cosine). So, piecewise linear approxi-

mations for sine and cosine are used instead, with integer variables to choose the appropriate approximation.

Additionally, non-convex obstacle avoidance is achieved by enumerating a set of convex obstacle-free con-

figuration space regions and using integer variables to assign footsteps to those regions. The use of integer

constraints can make formulating the problem more complicated, but once formulated, a variety of mixed-

integer program solvers can be used, such as Gurobi [35], GLPK [36], or lp_solve [37]. All of which provide

globally optimal solutions. The mixed-integer approach from [27] was capable of planning short sequences of

a few steps in under 1 second, and longer sequences of 10-30 steps in tens of seconds to minutes. However,

some methods, such as `1-norm minimization, have been shown to provide substantial speedups [38].

One approach that was recently published by Carnegie Mellon University is Diffusion-Inspired

Annealing for Legged Model Predictive Control, or DIAL-MPC for short [39]. DIAL-MPC uses a novel

diffusion-inspired annealing framework to optimize trajectories in real-time. It requires no prior training and

achieves global convergence at 50 Hz. A major advantage of DIAL-MPC is its capability to generate highly

dynamic motions, such as clambering onto a box in simulation. However, one drawback is that it struggles

with long time horizons. We strongly considered using DIAL-MPC as a footstep generator, but ultimately

decided against it because we anticipated it to be difficult to integrate into our existing pipeline. In the

future, integrating DIAL-MPC or a similar diffusion-based implementation might be an interesting avenue

to explore.

2.2.3 Trajectory Optimizer for Walking Robots (TOWR)

In the end, the method we decided to use for our footstep planner is based around the library

TOWR, which stands for Trajectory Optimizer for Walking Robots. The TOWR library uses a novel

phase-based parametrization of foot motion and forces, allowing the problem to be formulated as a single

trajectory optimization problem [7]. The gait is defined by continuous phase durations, which avoids integer

programming, allowing an NLP solver to optimize over the gait sequence. For a 1-second horizon, TOWR

is able to generate a 4-footstep motion plan in 100 ms [40]. The TOWR library also comes neatly wrapped

in a ROS package which makes development and integration easier.

Another benefit of using TOWR is that it generates a trajectory using a simplified dynamic model,

which can be used as an initial guess for the MPC trajectory optimizer. The TOWR library uses a single

rigid-body dynamic model which assumes that the legs have negligible inertia so they don’t significantly

contribute to the dynamics (i.e., light legs). Other trajectory solvers that use a more complex dynamic

10



model can use the simplified trajectory as an initial guess, speeding up computations and allowing for a

faster control loop.

2.2.4 Nonlinear Programming Solvers

The TOWR framework makes use of IFOPT [41], an Eigen-based C++ interface to nonlinear pro-

gramming solvers, namely SNOPT [30] and IPOPT [31]. SNOPT solves problems using sequential quadratic

programming (SQP), a method that uses a series of quadratic programming subproblems, each of which ap-

proximates the original nonlinear problem. On the other hand, IPOPT implements an interior point method

that solves optimization problems by navigating through the interior of the feasible region and employing a

barrier term in the objective function to adhere to the problem constraints.

SNOPT excels in handling large-scale problems with “many thousands of constraints and variables”

and can handle infeasible constraints, which allow it to “terminate without computing the nonlinear func-

tions” [30, p. 979, 981]. However, SNOPT is designed for problems with a “moderate number of degrees of

freedom,” which may limit its applicability to problems with a high number of degrees of freedom [30, p.

979]. IPOPT promises “efficiency and robustness” and “global convergence,” making it a reliable choice for

problems requiring a strong convergence guarantee [31, p. 26, 35]. It also has the added benefit of being

open source, which makes it easily accessible and modifiable [31, p. 47]. However, IPOPT may encounter

issues if the problem is infeasible, and its sensitivity to scaling can also pose challenges [31, p. 32, 45].

IPOPT can also be run with several different linear solvers. The most basic of which is Mumps,

which is the default setting of IFOPT. Within the IFOPT code, it says that “Mumps is the default because it

comes with the precompiled Ubuntu binaries. However, the Coin-HSL solvers can be significantly faster and

are free for academic purposes.” This refers to the Harwell Subroutine Library (HSL) linear solvers. There

are several different linear solvers, but we chose to examine HSL-MA97 since it is recommended for “general

use,” as well as HSL-MA57 since it is recommended for “small or highly sparse problems” [42].

2.2.5 Contact Estimation

One of the major limitations of the robot, as noted by the previous BiQu team, is issues of accurately

representing the terrain and understanding its own location within that terrain. While the perception team

is addressing drift and quicker updates for state estimation, the contact estimation can also be improved.

The contact estimation informs the trajectory optimizer and whole body controller (WBC) of the current

contacts of the robot’s legs, allowing for the application, or lack thereof, of contact forces.

11



Currently, the contact estimation is done by the force sensors. The force sensors lie beneath the

footpads, a spherical surface for transferring force from the floor to the sensor as well as providing stability

at the contact point. These force sensors can be rife with problems such as large error bounds, drift, and

the use of a threshold for measuring contact that does not account for historical data. Indeed, Unitree notes

“the drift of this sensor is serious, and it needs to calibrate the zero point intermittently” during the swing

phase [43].

These evident issues with the use of force sensors for contact estimation have inspired alternative

methods of contact estimation and how to compensate for a contact mismatch, becoming a source of con-

siderable research. [44] uses the forward pass of a Hidden Markov Model (HMM) to detect contact using

a sampling-based method such as Monte-Carlo. Unfortunately, the lack of a guaranteed analytical solution

as well as the necessity to measure joint accelerations, which cannot be done in our case without using

finite differentiation that introduces delay and accuracy issues, remain major drawbacks. [45] uses artificial

intelligence to learn the appropriate probability threshold for contact given the applied force. This solution,

although effective for the given task, is unfortunately not very generalizable to different terrain types or gaits,

something that will likely be very necessary when climbing stairs. [46] uses a Kernel Density Estimator to

probabilistically model the contact surface’s coefficient of friction and computes the contact probability ac-

cordingly from the IMU readings. Although the method appears effective when maneuvering across surfaces

with varying or especially low coefficients of friction, it is slower than other methods, running at 500 Hz,

and does not seem to add much for our task accordingly. [47] uses a generalized momentum (GM) observer

model to estimate contact. Probability estimates of contact are calculated according to MPC-generated gait

timing, foot height calculated from forward kinematics, and estimated terrain height from either vision or

historical footsteps, and estimated force from the GM observer. This method was ultimately selected by

the team because of its quick reaction speed, quick computation time, ability to adjust expected footstep

height according to historical data, ability to assist in SLAM calculations, and ability to add measurements

from the force sensor to create a more holistic calculation. The handling of these differences is typically

done directly by the MPC, simply accounting for the lack of force for that leg in the trajectory optimization,

but sometimes frameworks such as [6] introduce an impedance controller for early touchdown and pause the

motion for the rest of the contacts in the event of a late touchdown.

2.2.6 Odometry

Odometry is highly important for any robotics task, but especially so for legged robots and even

more so for a task such as stair climbing. For legged robots, odometry issues can severely impact the robot’s

12



contact plan, leading to slippage, large changes in body height or orientation, and even catastrophic failure,

such as falls or flips. The results of these odometry issues are more severe for stair climbing, where a slight

change in leg position can make the difference between making contact with a stair or the stair below it, an

overall change of around 7 in for a full-sized stair. A 7 in gap can mean that the leg isn’t making contact

for a significant portion of the trajectory optimizer’s plan, easily leading to tips with the robot’s already

altered orientation and smaller support polygon. To minimize these odometry error effects, we implement a

simplified combination of IMU readings and leg kinematics shown in [48]. Moreover, we implement vision

data using SLAM in Section 2.1.2 to get a more external understanding of the robot’s position from the

surrounding elements. The odometry relies on an Extended Kalman Filter (EKF) to update and correct the

robot’s current state at each discrete time step. The extended Kalman filter equations are written as

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (2.3)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk−1 (2.4)

where x̂k|k−1 is the predicted state at time k from some update equation f(x̂k−1|k−1, uk−1) and Pk|k−1 is the

predicted covariance, Fk is the linearized error dynamics matrix, and Qk−1 is the process noise covariance

matrix. Because we have the IMU measurement at every time, we do not rely on the foot forces from the

previous timestep as part of our state estimation. Instead, we define

x̂k−1|k−1 =

[
r, v, p1, p2, ...pN

]T
(2.5)

where r is the position of the robot in the global frame, v is the velocity of the robot in the global frame,

and pl is the position of the lth foot in the global frame, with N being the number of legs. We can therefore

define

rk|k−1 = rk−1|k−1 +∆tvk−1|k−1 +
∆t2

2
ak−1 (2.6)

where ak−1 is the 3 × 1 vector of acceleration as measured by the IMU at time k − 1. Moreover, the body

velocity can therefore be understood as

vk|k−1 = vk−1|k−1 +∆tak−1 (2.7)

13



We can assume that the legs are stationary for the prediction section of the EKF, so we can therefore write

f(x̂k−1|k−1, uk−1) as

x̂k|k−1 = Ax̂k−1|k−1 +Bak−1 (2.8)

A =



I3×3 ∆tI3×3 . . . 03×3

03×3 I3×3 . . . 03×3

...
. . . . . .

...

03×3 . . . . . . I3×3


B =



∆t2

2 I3×3

∆tI3×3

03×3

...

03×3


(2.9)

The EKF update equations can then be used to correct the estimations of the trunk from the IMU integration

using leg kinematics and to incorporate end-effector movement as well. The correction equations can be

written as

ỹk = zk − h(x̂k|k−1) (2.10)

Sk = HkPk|k−1H
T
k +Rk (2.11)

Kk = Pk|k−1H
T
k S

−1 (2.12)

x̂k|k = x̂k|k−1 +Kkỹ (2.13)

Pk|k = (I −KkHk)Pk|k−1 (2.14)

where zk is the sensor measurement at time k, Sk is the innovation covariance Hk is the measurement Jaco-

bian, Rk is the measurement covariance, and Kk is the Kalman gain. We therefore introduce a measurement

vector

zk =

[
s1 s2 . . . sN

]
(2.15)

where

sl = Cklkinl(q) (2.16)

where lkinl represents the forward kinematics in the robot body frame of leg l from leg joint variables q

as multiplied by Ck, which transforms from the body frame to the global frame using the robot trunk’s

orientation. We can therefore define the transform h(x̂k|k−1) as

ỹk = zk −Dx̂k|k−1 (2.17)

14



D =



I3×3 −I3×3 03×3 . . . 03×3

I3×3 03×3 −I3×3 . . . 03×3

...
...

...
. . .

...

I3×3 . . . . . . . . . −I3×3


(2.18)

The covariance estimate can be updated using the same matrix, redefining

Hk = D (2.19)

It can therefore be observed that

ỹk =



s1,k − s1,k−1

s2,k − s2,k−1

...

sN,k − sN,k−1


=



∆s1,k

∆s2,k
...

∆sN,k


(2.20)

and

Kkỹ ∝



∑N
l=1 ∆sl,k

03×3

−∆s1,k

−∆s2,k
...

−∆sN,k


(2.21)

Following the update equations, this updates the trunk position at each time according to the

change in the leg kinematics. Moreover, we change the leg kinematic sensor variance to a large number

during the swing phase to prevent changes in foot position during swing phase from contributing to the

change in the trunk position. The end result is that if the robot is predicted by the IMU to be lower than

the leg kinematics allow, the leg kinematics push the trunk position upwards over time to accommodate. The

EKF adjusts the gain on a running basis, leading to an adaptive trust according to historical measurements.

15



Chapter 3

Design and Implementation

3.1 Project Objectives

To achieve our goal, as outlined in Section 1.2, of live climbing full-sized 7-inch stairs in a robust

and computationally efficient manner, our team set out to fulfill the objectives outlined below. We organized

these objectives into two main areas of concern, perception and control, and delegated sub-teams to handle

each.

The perception team focused on enhancing the sensors and hardware to improve the refresh rate of

the perception module, while also exploring alternative strategies to optimize its performance. The objectives

of the perception team were to:

• Integrate elevation mapping using additional sensors and compute

• Improve odometry using LiDAR

• Expose planar confidence data for MPC integration

The control team focused on integrating new elements to the control pipeline to handle live terrain

interactions. The objectives of the control team were to:

• Create a dynamic footstep planner for live terrain response

• Develop contact estimation for improved terrain interaction

16



3.2 System Pipeline

The system pipeline proposed in this paper is shown in Figure 3.1. Note that the dynamic footstep

planner, FPOWR, has not yet been integrated into the full system pipeline. This is because it was designed

as a standalone library to enable the use of custom trajectory optimization frameworks in an MPC context

(See Section 6.1 for more details).

Figure 3.1: System Pipeline

3.3 Perception

3.3.1 Hardware Details

The previous 2024 BiQu team utilized the Intel RealSense D435i stereo depth camera but encoun-

tered limitations, including restricted field of view, environmental noise, and map drift. Adding a LiDAR

sensor addresses these issues by offering broader coverage and enhancing the generated maps for downstream

pipeline steps. Additionally, the LiDAR sensor contributes to more accurate odometry measurements within

the perception pipeline. To improve the accuracy and refresh rate of the robot-centric elevation mapping

pipeline, we incorporated additional sensors and compute resources on the Go1 robot.

17



Initially, we investigated methods to enhance the scope and detail of the elevation mapping pipeline

using multiple sensors. Based on a survey of elevation mapping protocols and their integration strategies,

we selected the Livox Mid-360 LiDAR for its high refresh rate and extensive field of view. One of the largest

problems faced by the previous BiQu team was drift of the robot with respect to the map. The Mid-360’s

360° horizontal and 59° vertical coverage made it particularly suitable for running SLAM. As described in

Section 2.1.2, using SLAM combats drift in odometry. After purchasing the sensor and integrating its SDK,

we experimented with various mounting configurations on the robot and in simulation to optimize coverage

while ensuring minimal obstruction by the robot itself.

To develop our perception solution, we focused primarily on two sensors: the Intel RealSense D435i

and the Livox Mid-360, a depth camera and a LiDAR, respectively. Both devices produce point clouds, but

use different sensing methods and offer different strengths. The D435i captures a narrow but high-resolution

view in the direction it’s facing, with a high frame rate. The Livox Mid-360, in contrast, offers a panoramic

360° horizontal field of view at a lower refresh rate, better suited for global spatial awareness. The table

below highlights the key differences:

Specification Livox Mid-360 Intel RealSense D435i
Field of View (H × V) 360° × 59° 87° × 58°
Effective Range Up to 70 m (at 80% reflectivity) Up to 10 m
Sensing Method Non-repetitive scanning LiDAR Active infrared stereo vision
Data Rate 200,000 points/sec Up to 1280 × 720 depth frames @ 30–90 FPS
Update Rate 10 Hz (typical) Up to 90 Hz

Table 3.1: Comparison of Livox Mid-360[1] and Intel RealSense D435i[2] specifications

In addition, we tried two separate compute solutions to run the perception pipeline. We use the

Intel NUC i7 11th generation mounted on top of the robot to run the pipeline with a powerful CPU. The

other solution we tried was the NVIDIA Jetson Orin NX, which features a powerful GPU. Following the

implementation described in [4], we adopted a CUDA-accelerated elevation mapping module to parallelize

ray casting operations. Implementing GPU acceleration enables more frequent updates to the elevation

map, reducing accumulated variance and ensuring better alignment with true terrain heights. Although,

the powerful CPU that the NUC features is still extremely valuable, as it runs FAST-LIO, as well as other

modules of the pipeline, at increased speed compared to the Jetson.

3.3.2 Wireless Hardware Upgrades

By enabling untethered power for the external compute unit and sensors, we expanded the robot’s

ability to perform perceptive locomotion across a greater variety of test scenarios and for longer durations.

18



To achieve this, we connected a 24V to 19V voltage regulator to the Go1’s external power port, supplying

power to both the NUC and LiDAR.

However, during testing, we observed that the power supply frequently experienced brownouts due

to the high power draw from the motors. To address this issue, we replaced the power source with an

externally mounted 24V 5Ah LiPo battery, which provides power to the external compute unit and sensors

for a duration comparable to the onboard Go1 battery. These upgrades allowed us to test the perceptive

locomotion pipeline in new environments beyond the lab.

3.3.3 Hardware Mounting Solutions

Throughout the process of our project, we focused primarily on two different sensing solutions using

the LiDAR. Our initial design used an adjustable mount as shown in Figure 3.2. This design would allow us

to adjust the angle at which the LiDAR is stationed without any major hardware adjustments. This could

allow for tuning as we conducted experiments.

Figure 3.2: Adjustable LiDAR mount solution

Our other configuration uses just the LiDAR in a stable mount, at a slant of 22 degrees. This allows

the LiDAR to see more terrain directly in front of the robot. This configuration is shown in Figure 3.3. This

design features a more stable solution than the first design. Since the mount does not feature any joints

that are likely to loosen over time, it is more prepared to endure vibrations and the general shaking that

occurs when a quadruped is in motion. For these reasons, we ultimately decided to go with the stable mount

19



solution which can be seen in Figure 3.4.

Figure 3.3: Stable LiDAR solution at slant of 22 degrees

3.3.4 Elevation Mapping Fusion and Sensor Integration

To integrate the LiDAR point cloud into the elevation mapping module, we implemented a cropping

filter that only keeps relevant points in-front of the robot. Following this, we conducted extensive simulation

trials to fine-tune the elevation mapping fusion parameters. The fusion process uses a Bayesian update

framework, as described in 2.1.1.1.

3.3.5 Improving Odometry Using LiDAR

We implemented LiDAR-Inertial Odometry (LIO) before elevation mapping to reduce drift in state

estimation caused by inaccuracies in odometry. As described in Section 2.1.2, incorporating additional

state estimation methods, such as LiDAR and depth camera fusion, could improve the accuracy of the

estimated robot state before it is fed into the elevation mapping node. By minimizing odometry drift, the

refresh rate of the elevation map may become less critical to the overall performance of the perception

pipeline. We implemented a pipeline as shown in Figure 3.5. Furthermore, we utilized FAST-LIO2 [22],

an accelerated LiDAR-Inertial Odometry (LIO) algorithm with integration for Livox sensors. This package

consumes LiDAR and IMU data to estimate motion and generate new odometry. This odometry output

is then fused with additional odometry sources from joint encoders and contact estimation in an Extended

20



Figure 3.4: Final LiDAR mount using stable 22 degree slant

Figure 3.5: Proposed Updated Perception Pipeline

21



Kalman Filter, ultimately improving the state estimate used for elevation mapping. This extended Kalman

Filter integration is similar to the method described by ETH Zürich [4].

To integrate the odometry from FAST-LIO2 into our robot’s state estimation, we incorporate it into

the Legged Control [23] Kalman filter-based estimation framework, which fuses multiple sensor modalities,

including joint encoders, contact detection, and IMU measurements, to produce a robust state estimate.

Specifically, the subscribed FAST-LIO2 odometry updates the position and orientation of the base frame

within the Kalman filter. The measured position from FAST-LIO2 is treated as an observation in the Kalman

filter update step, where the innovation term helps correct drift in state estimation. Additionally, FAST-

LIO2 orientation updates are fused using a separate small-angle correction to improve orientation estimation.

By integrating this odometry stream with kinematic state estimates from the legged system, we achieve a

more drift-resilient and accurate localization solution, which is ultimately used to improve elevation mapping

and overall terrain perception.

3.3.6 Exposed Region Data for MPC Integration

To enhance the robot’s ability to interact with terrain through model predictive control (MPC), we

exposed additional information from the perception module’s planar decomposition. This includes height

confidence values that quantify the certainty of surface estimation.

The elevation map generated by sensor readings contains many numerical values about each cell

in the map, such as elevation, h, representing the estimated height of the cell, as well as variance, σ2
m,

referencing the uncertainty of the height at that cell. This uncertainty value, σ2
m, is updated based on its

previous value, as well as an estimate for the variance from a sensor noise model (See Section 3.3.4). We

devised a method to generate a value of ‘region variance’, σ2
r , which takes information about the elevations

and individual variances of each cell within a defined region and returns a new composite variance for that

region.

One proposed implementation is as follows. σ2
mavg

is calculated by taking the average value of

the variances for each cell in the region. Then the statistical variance of the heights, σ2
h, is calculated by

summing the square differences between each elevation and the mean elevation of the region, and dividing

by the number of cells in the region.

A typical σ2
m value is around 0.001, with an max value capped at 0.05. We convert this to a

multiplier, m, to scale up our height variance σ2
h based on the uncertainty we have within each measurement.

22



σ2
mavg

=
1

N

N∑
i=1

(σ2
mi

)

σ2
h =

1

N

N∑
i=1

(hi − h̄)2

m = (1 + 100 ∗ σ2
mavg

) ∈ [1, 6]

σ2
r = m ∗ σ2

h (3.1)

This new region variance σ2
r is exposed within the contact estimation pipeline, to provide a more

data-driven approximation for how uneven the terrain is in the region where the robot is stepping.

This value, derived from preprocessing statistics within the elevation mapping pipeline, dynamically

influences footstep planning in regions of lower confidence, thereby improving robustness in challenging

environments. The approach mitigates errors resulting from uncertain terrain data, enhancing the robot’s

stability and performance during tasks such as stair climbing.

We also propose alternative, more computationally expensive but perhaps more accurate, methods

for calculating the combined variance of the forward kinematics and the map. One such alternative method

proposes a weighted average of the grid map cells around the end effector. This weighted averages functions

similar to the Gaussian blur kernel of image processing. That is, the cell immediately below the foot receives

the highest weighting while the cells around the foot are weighted according to their distance from the foot

relative to the standard deviation of the foot measurements σj . This weighted average can be calculated as

σ2
mavg

=
1∑W

i=1

∑H
j=1

σj

r
√

i2+j2

W∑
i=1

H∑
j=1

σj

r
√

i2 + j2
(σ2

mi
) (3.2)

where r is the resolution of the grid map, denoting the length and width of one cell in meters. In kernel

form, this can look like

σ2
mavg

=
r
√
10

6σj

√
5 + 6σj

√
10 + 8σj

√
2 + r

√
10



σj

2r
√
2

σj

r
√
5

σj

2r
σj

r
√
5

σj

2r
√
2

σj

r
√
5

σj

r
√
2

σj

r
σj

r
√
2

σj

r
√
5

σj

2r
σj

r 1
σj

r
σj

2r

σj

r
√
5

σj

r
√
2

σj

r
σj

r
√
2

σj

r
√
5

σj

2r
√
2

σj

r
√
5

σj

2r
σj

r
√
5

σj

2r
√
2


(σ2

mi
) (3.3)

23



for a 5 × 5 kernel. The downside of this approach is it does not take changes in elevation into account

when weighting the variance. Including the elevation map in the variance calculation may be helpful in

determining the effect that the variance has on the robot and, by extension, the level of trust that can be

placed in the probability of contact given height.

Therefore, we propose a Kalman filter and Gaussian-based method of calculating an elevation-

informed and distance-discounting variance estimate of the map beneath the foot. The algorithm first relies

on the Kalman prediction equations shown in Equation 3.30. The values of the matrices in the Kalman

prediction are

Ak = 0N , Bk = IN , uk =


σ2
m1

...

σ2
mN


k

, and Σwk
=


σ2
m1

· · · 0

...
. . .

...

0 · · · σ2
mn


k

(3.4)

Using the Kalman correction equations in Section 3.4.2.3, we can change the correction variances to have a

weight that increases if the elevation is significantly different from the elevation direction beneath the foot.

24



We therefore define the matrices as

z̃i,j,k =


|1 + hi,j,1−h1

σj
|

...

|1 + hi,j,N−hN

σj
|


k

(3.5)

z̃k =



z̃1,1,k
...

z̃1,N,k

z̃2,1,k
...

z̃N,N,k


(3.6)

Σvi,j,k =


cdf( r

√
i2+j2

σj
)σ2

mi,j,1
· · · 0

...
. . .

...

0 · · · cdf( r
√

i2+j2

σj
)σ2

mi,j,N


k

(3.7)

Σvk =



Σv1,1,k 0N . . . . . . . . . 0N

0N Σv1,2,k

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . Σv2,1,k

. . .
...

...
. . . . . . . . . . . .

...

0N . . . . . . . . . . . . ΣvN,N,k


(3.8)

Hk =


IN
...

IN

 (3.9)

where hi,j,N is the height of the grid cell i, j relative leg N , hN is the height of the grid cell directly

beneath foot N , cdf( r
√

i2+j2

σj
) is the output of the two-tailed cumulative distribution function of the normal

distribution defined by N (hN , σ2
j ) representing the probability of making contact at that location or further,

and σ2
mi,j

is the variance of the map at cell i, j. The CDF cdf(x) of a two-tailed normal distribution N (µ, σ)

can otherwise be written as 1
2 (1 + erf(x−µ

σ
√
2
)). Using these as the Kalman update equations, therefore, turns

the problem into an instantaneous weighted measurement of the map variances, where the overall variance

is increased if there are large elevation changes nearby. Additionally, these corrected variances are the map

variance multiplied by the z-score of the difference in height between the cell and the foot relative to the

25



foot variance. The corrected variances are then weighted by the Kalman gain according to the Gaussian

probability of making contact at or past that location. This ensures the entire Kalman filter is consistent

under a normal distribution and weights the variance according to both the effect that a change in variance

would have on the robot and the probability that the change in variance will occur. The results of these

variance estimation algorithms are shown in Section 4.2.2 with their variances on different terrains, its effect

on the contact estimation, and the calculation time reported accordingly.

3.4 Control

3.4.1 Footstep Plan Optimizer for Walking Robots (FPOWR)

Model predictive control (MPC) relies on solving trajectory optimization problems continually as

a control policy. State-of-the-art trajectory optimization libraries typically operate on fixed footstep contact

sequences [34]. To achieve motion without prior perception, the robot needs to be able to plan footsteps

dynamically as new terrain data is received. As such, we require a dynamic footstep planner that can map

surfaces to foot placements in real-time.

Our proposed method is called FPOWR, which stands for Footstep Plan Optimizer for Walking

Robots. FPOWR is built on top of the trajectory optimization framework TOWR (Trajectory Optimizer

for Walking Robots) as discussed in Section 2.2.3. We obtain a footstep plan by extracting the footsteps

from the trajectory generated by TOWR and mapping them onto convex steppable regions (Figure 3.6).

To implement this, there were a number of challenges—namely, correctly representing data for TOWR,

reconstructing the planes in the output of TOWR, and integrating it in the ROS environment. This section

describes solutions to these challenges.

3.4.1.1 Heightmap Representation

In TOWR, the world is represented using a function f : R2 → R which retrieves the Z height for a

corresponding X, Y coordinate. This imposes an issue—what is the best way to represent the data from the

perception pipeline in this system? The perception pipeline outputs a list of convex planes and a number

of processed and raw heightmaps. For this use case, and for the sake of isolating this module from in the

perception pipeline, we choose to use the raw heightmap data.

26



Figure 3.6: FPOWR Example Trajectory and Footstep Plan

3.4.1.2 Output Plane Reconstruction

The output from TOWR is a trajectory for the robot model. This trajectory contains information

about the trunk (SE(3)) and the four end effectors (R3). We had to extract the footstep planes ourselves.

To do this, we started by processing the trajectory to find the times where every foot made or broke contact

with the ground. At each of these times the nearest plane to each end effector is found.

Mapping positions onto their nearest plane is rather trivial, just requiring significant data manip-

ulation. We use boost::geometry::distance to do this after fitting the planar perception data into the

appropriate boost data structures. This approach takes O(N ·M) time, where N is the number of footsteps

and M is the number of planes to check. Checking for distances between the footstep point and every plane

is an expensive computation, but our testing found it not to be an issue.

This process of mapping footsteps onto nearest planes could introduce issues down the line. There

are circumstances where “rounding” the position of footsteps in could lead to kinematic infeasibility when

Galileo is trying to solve the trajectory. It would be prohibitively challenging to force TOWR to only step

in the prescribed planes without modifying the internal code. Despite this theoretical issue, the system

performs well when used in the real world for stair climbing.

27



3.4.1.3 ROS Integration

We wanted to make FPOWR easy to use for others. For this reason, it was designed as a ROS

action. This allows FPOWR to integrate easily with other ROS systems. Additionally, it allows for the

footstep plan to be generated in the background and only retrieved when needed. ROS actions can thought

of as a client/server connection as shown in Figure 3.7. In the context of the proposed future system control

diagram (Figure 6.1), the client connecting to FPOWR will connect to Galileo to inform it of the contact

sequence, convex planes, and provide initial guesses.

28



Figure 3.7: Example Usage of FPOWR

29



3.4.1.4 Using Initial Guesses for MPC Speedup

Another advantage of FPOWR is that the trajectory it uses to generate the footstep plan can

also be fed into the MPC’s trajectory optimizer as an initial guess, allowing for faster computation. As

mentioned in Section 2.2.3, TOWR uses a single rigid-body dynamic model, which assumes that the legs

have negligible inertia (i.e., light legs). An MPC using a more complicated dynamic model can benefit by

using the trajectory generated from the simpler rigid-body dynamic model as an initial guess. This speeds

up computation and allows for a faster MPC control loop.

3.4.2 Contact Estimation

One of the major limitations of the robot, as noted by the previous BiQu team, is issues of accurately

representing the terrain and understanding its location in the world. While the perception team is taking

steps to address these issues, there is a place for the Whole Body Control (WBC) framework to include these

disturbances as well. Some controllers, for instance, can recognize a lack of contact where contact should

have been made and can lower the legs, assuming a small gap between location and goal. The controls team

will implement contact estimation in Galileo, specifically leveraging confidence intervals in the position of

the planar decompositions provided by the perception pipeline.

3.4.2.1 Force Observation

The standard robot equations of motion can be written as

Mq̈ + Cq̇ + g = S>τ + J>f

where q = [hT
com, qTb , q

T
j ]

T ∈ Rnd , hcom ∈ R6 represents the collection of the normalized centroidal mo-

mentum, [qTb , q
T
j ]

T ∈ Rnj is the collection of joint angles and nj is the number of actuated joints, M ∈

Rnd×nd the mass matrix, Cq̇ ∈ Rnd the generalized Coriolis force, g ∈ Rnd the generalized gravity force,

S ∈ Rnj×nd an actuated joint selector matrix, J ∈ R3nl×nd the Jacobian for all the contacts to the in-

ertial fram vertically concatenated, and f ∈ R3nl the force of all the contacts represented in the form

f = [f0,x, f0,y, f0,z, ..., fnl,x, fnl,y, fnl,z]
T . These standard equations of motion therefore map joint torques,

accelerations, and velocities into their effects on the robot’s center of mass coordinate system and its accel-

eration.

30



The external or disturbance forces can naturally be solved for

τobs = J>f = Mq̈ + Cq̇ + g − S>τ (3.10)

where τobs serves as an observer of the current effects on the contact forces as a result of the joint torques,

accelerations, velocities, and the center of mass’s accelerations. There is still an issue with this method as

it is prone to noise and momentary fluctuations in joint readings. As such, a low-pass filter is placed on the

system to eliminate noise that would not be present in previous readings. Normally, a low-pass filter would be

implemented in Laplace space and discretized, but [47] recognized that the discretization introduced errors

and led to a less accurate estimation than the discrete-time frequency domain, or z-domain. Although there

does exist an exact z-transform function, equations written in the z-domain can typically be expressed as

H(z) = Y(z)
X(z) =

A0 + A1z
−1 + ...+ Ah−1z

−h

1− B1z−1 − ...− Bh−1z−h
(3.11)

h <= n is the order of the system or the number of previous samples included in the current calculation,

and where z0 represents a reading 0 steps back in time, z−1 represents a reading from 1 step back in time,

and so on. This equation can then be rewritten in the discrete-time space as

Y[n]− B1Y[n− 1]− ...− BhY[n− h] = A0X[n] + A1X[n− 1] + ...+ AhX[n− h] (3.12)

This can then be rewritten as

Y[n] =

k∑
i=0

AiX[n− i]−
k∑

i=1

BiY[n− i] (3.13)

Using this representation, we introduce a first-order low-pass filter on the observance vector such that

τ̂obs =
1− γ

1− γz−1
(Mq̈ + Cq̇ + g − S>τ) (3.14)

where γ is the z-domain of the cutoff frequency. Using the z-transform, we find that γ = e−λ∆t where λ is

the cutoff frequency in Hz and ∆t is the sampling time. Notably, this equation still has joint accelerations,

which we do not have access to, so they must be removed. Rewriting the filtered accelerations such that

M̂q̈ =
1− γ

1− γz−1
Mq̈ (3.15)

31



We can use the previous expression of the z-domain in discrete time to find that

M̂q̈[n] = γM̂q̈[n− 1] + (1− γ)Mq̈[n] (3.16)

starting from n = 1 and assuming M̂[−1] = 0, we find that

M̂q̈[0] =(1− γ)Mq̈[0] (3.17)

M̂q̈[1] =(1− γ)Mq̈[1] + γM̂q̈[0] = (1− γ)Mq̈[1] + γ(1− γ)Mq̈[0] (3.18)

M̂q̈[2] =(1− γ)Mq̈[2] + γM̂q̈[1] = (1− γ)Mq̈[2] + γ((1− γ)Mq̈[1] + γ(1− γ)Mq̈[0]) (3.19)

M̂q̈[n] =(1− γ)

n∑
k=0

γn−kMq̈[k] (3.20)

The equation can now be evaluated using summation by parts. The general equation for summation by parts

is
N∑

k=0

fk(gk+1 − gk) = fn+1gn+1 − f0g0 −
N∑

k=0

gk+1(fk+1 − fk)

By selecting

fk = γn−kM[k] and (3.21)

gk = q̇[k]/∆t (3.22)

we can solve for

(1− γ)

n∑
k=0

γn−kMq̈[k] = (1− γ)

n∑
k=0

γn−kM[k](q̇[k] + q̇[k + 1])/∆t =

(1− γ)(γ−1/∆tM[n+ 1]q̇[n+ 1] + γn/∆tM[0]q̇[0]−
n∑

k=0

q̇[k + 1]/∆t(γn−k−1M[k + 1]− γn−kM[k])) (3.23)

assuming q̇ = 0 and knowing that limn→∞ γn = 0, we can simplify to

M̂q̈[n] = (1− γ)(γ−1/∆tM[n+ 1]q̇[n+ 1]−
n∑

k=0

γn−kq̇[k + 1]/∆t(γ−1M[k + 1]− M[k])) =

(1− γ)(γ−1M[n+ 1]q̇[n+ 1]−
n∑

k=0

γn−kq̇[k + 1]/∆t(γ−1M[k + 1]− M[k + 1] + M[k + 1]− M[k])) (3.24)

32



Grouping terms yields

M̂q̈[n] = 1− γ

γ−1∆t
M[n+ 1]q̇[n+ 1]− (1− γ)

n∑
k=0

γn−kq̇[k + 1]/∆t(
1− γ

γ
M[k + 1] + M[k + 1]− M[k])) =

1− γ

γ−1
M[n+ 1]q̇[n+ 1]− (1− γ)

n∑
k=0

γn−k(
1− γ

γ∆t
M[k + 1]q̇[k + 1] + Ṁ[k + 1]q̇[k + 1]) (3.25)

Assuming Ṁ = C + CT , β = 1−γ
γ∆t , and the generalized momentum p = Mq̇ we can rewrite as

M̂q̈[n] = βp[n+ 1]−
n∑

k=0

(1− γ)γn−k(βp[k + 1] + C[k + 1]q̇[k + 1] + CT [k + 1]q̇[k + 1]) (3.26)

applying the inverse of Equation 3.20, we can rewrite the filter output to be equivalent to

M̂q̈ = βp − 1− γ

1− γz−1
(βp + Cq̇ + CT q̇) (3.27)

and finally rewrite the filtered disturbance observer without joint accelerations as

τ̂d = βp − (1− γ)

1− γz−1
(βp + S>τ + C>q̇ − g)

or

τ̂obs[n] = γτ̂obs[n− 1] + βp[n]− γβp[n− 1]− (1− γ)(βp + S>τ + C>q̇ − g)[n] (3.28)

These observed effects on the robot dynamics can then be converted back into contact forces by inverting

Equation 3.11 with the selection matrix into

f̂i = (S`iJT
i )

−1S`i τ̂obs (3.29)

3.4.2.2 Kalman Prediction - Gait Timing

As in [47], we use a Kalman filter to combine probability estimations according to the foot height,

foot force, and gait timing. The Kalman prediction equations

x̂k|k−1 = Akx̂k−1 +Bkuk (3.30)

Σk|k−1 = AkΣk−1A
T
k +Σwk

(3.31)

33



are calculated using

Ak = 0N and Bk = IN and uk =


P1(c|sφφ)

...

PN (c|sφ, φ)


k

and Σwk
=


σ2
φ,1 · · · 0

...
. . .

...

0 · · · σ2
φ,N


k

(3.32)

where P (c|sφφ represents the probability of contact given the scheduled contact sφ = {0, 1} and the current

progress through the planned motion φ = t−t0
tend−t0

where t is the current time, t0 is the expected starting

time of the motion tend is the expected ending time of the motion. This probability can be calculated by

P (c|sφ, φ) =
1

2
( sφ

[
erf
(
φ− µc0

σc0

√
2

)
+ erf

(
µc1 − φ

σc1

√
2

)]
+ (3.33)

sφ

[
2 + erf

(
µc0 − φ

σc0

√
2

)
+ erf

(
φ− µc1

σc1

√
2

)]
) (3.34)

where µcn represents the mean expected motion progression (φ) value at which the motion will switch to the

next contact type and σcn represents the expected variance of that timing. Because of the values of the A

and B matrices, the Kalman prediction can be simplified to static likelihood maximization with Bayes law

[47] where

x̂k|k−1 = uk (3.35)

Σk|k−1 = Σwk
(3.36)

3.4.2.3 Kalman Update - Foot Height and Force

The Kalman update equations

Kk = Σk|k−1H
T
k (HkΣk|k−1H

T
k +Σvk)

−1 (3.37)

x̂k|k = x̂k|k−1 +Kk(z̃k −Hkx̂k|k−1) (3.38)∑
k|k

= (I − KkHk)
∑

k|k−1
(3.39)

34



are used to update the probability estimates from the prediction equations. As in [47], we use the probability

of contact given the foot height and estimated foot force according to

z̃1,k =


P1(c|pz,1)

...

PN (c|pz,N )


k

z̃2,k =


P1(c|fz,1)

...

PN (c|fz,N )


k

z̃k =

z̃1,k
z̃2,k

 (3.40)

Σv1,k =


σ2
pz,1

· · · 0

...
. . .

...

0 · · · σ2
pz,N


k

Σv2,k =


σ2
fz,1

· · · 0

...
. . .

...

0 · · · σ2
fz,N


k

Σvk =

Σv1,k 0N

0N Σv2,k

 (3.41)

Hk =

IN

IN

 (3.42)

where σpz,i
is the foot height variance for foot i and σfz,i is the foot force variance for foot i. The probability

Pi(c|pz) is the probability of contact at foot i given the foot height pz from joint data according to

P (c|pz) =
1

2

[
1 + erf

(
µzg − pz

σzg

√
2

)]
(3.43)

where uzg is the average footstep height according to vision data and historical footsteps. The probability

of contact given foot force in the downward direction fz as measured by the external force observer is

P (c|fz) =
1

2

[
1 + erf

(
fz − µfc

σfc

√
2

)]

where µfc is the average force to determine contact. By taking the updated probability of contact from the

Kalman correction equations, we can set a threshold probability to determine contact as a binary variable

for each leg. Additionally, digital hysteresis can be used to ensure that slight noisiness in sensor readings

won’t effect the estimation of contact once it has already been detected.

3.4.2.4 Kalman Update - Foot Sensor Force

The schema introduced in Section 3.4.2.3 can be easily modified to include more readings. The

Unitree Go1 has a force sensor in each foot for detecting the forces exerted by the terrain on the leg. These

force sensor readings can be incorporated in the Kalman Correction equations much like the estimated

forces were. By extending the correction measurement noise Σvk , measurement conversion matrix Hk, and

35



measurement vector z̃k to

Σvk = diag

[
Σv1,k . . . Σvr,k

]
Hk =


IN
...

IN

 z̃k =


z̃1,k

...

z̃r,k

 (3.44)

the Kalman correction equations can be extended to any r sources of measurement, provided the readings

are provided as a probability of contact for each leg with some variance. To add the force sensors, the

measurement vector z3 must also be calculated as

z̃3,k =


P1(c|fz,1,s)

...

PN (c|fz,N,s)


k

(3.45)

where fz,N,s is the force measured from the force sensor at leg N .

3.4.3 Perception-Aware Contact Estimation (PACE)

The contact estimation introduced so far is notably perception-less. The contact estimation relied

on foot force, contact timing, and foot height, but the foot height was notably based on some µzg mean

foot height for contact. With a constant µzg a robot cannot climb stairs, the goal of our project. In the

world frame, the contact location is changing according to the ascent or descent of the stairs. An increase in

contact height relative to a constant µzg naturally results in a lower probability of contact whereas a decrease

in contact height results in a higher probability of contact, neither of which is representative of reality and

both of which can cause divergent actions in the WBC leading to a fall. In the robot frame, this divergence

in the WBC holds true with a constant µzg . When the robot is ascending, the torso naturally adjusts to the

slope of the stairs with the center of mass lying closer vertically to the front contacts than the back contacts.

Because of this vertical difference between the front contacts and the back contacts relative to the center of

mass, the same issue occurs where the back legs detect contact early and the front legs detect contact late

or not at all. The reverse is true when descending. This then reveals a need for perception-informed contact

estimation that incorporates the ground height as measured by the LiDAR into the probability of contact

given foot height.

In Section 3.3.6, we introduced methods for extracting the terrain height and confidence from

the grid map developed as part of the LiDAR and depth camera perception pipelines. In this section, we

36



introduce a method for implementing these for perception-aware contact estimation (PACE). The perception-

blind method for calculating the probability of contact given foot height is

P (c|pz) =
1

2

[
1 + erf

(
µzg − pz

σzg

√
2

)]
(3.46)

In perception-aware contact estimation, µzg is no longer a constant. Instead, we can calculate the mean foot

height for contact using

µzg,l = h(px,y,l) + o (3.47)

where h(px,y) is the output of the methods in Section 3.3.6 representing the height of the terrain beneath

foot l as derived by its 2D position in the world frame px,y and o is a constant offset from the map to the

foot to ensure the desired output of the probability of contact. The variance of the contact can then be

calculated as

σzg,l = σ(px,y,l) + σj (3.48)

where σ(px,y, l) is the variance of the map as derived by the methods in Section 3.3.6 and σj represents the

constant variance of the forward kinematics of the end effector in the z direction. Combining these with

Equation 3.46, we can find the perception-aware probability of contact given foot height as

P (c|pz) =
1

2

[
1 + erf

(
h(px,y,l) + o− pz

(σ(px,y,l) + σj)
√
2

)]
(3.49)

3.5 Containerization

The team spent a significant amount of time creating Docker containers to run the project code

in. Initially, this was done out of necessity as many project contributors were using Windows or Mac

without access to standard Linux build tools. This allowed all team members to share the same development

environment regardless of their system architecture. In the future, it would be possible to deploy these

Docker containers onto the Go1. This would significantly streamline the step from sim to real hardware, but

at this point the team has not yet attempted this. These should significantly reduce the amount of setup

required for future BiQu teams. In the end, we created Docker containers for the following code bases listed

below, which can all be found on the WPI ALMaS GitHub at https://github.com/ALMaSWPI:

• FPOWR

• Legged Control

37

https://github.com/ALMaSWPI


• Legged Perception

• Galileo

• DIAL-MPC

38



Chapter 4

Results and Discussion

4.1 Perception Pipeline

4.1.1 Drift Reduction

4.1.1.1 Experimental Setup

We evaluated the impact of integrating FAST-LIO2 on odometry drift reduction through a series

of trials involving both single-platform and multi-stair real-world configurations. In these experiments, the

Livox Mid-360 served as the sole data source for both FAST-LIO2 and the elevation mapping pipeline. The

Livox Mid-360 was mounted above the robot, angled forward as seen in Figure 4.1. For each trial, the robot

was placed approximately 2 meters from the elevated platform or stairs and navigated toward the obstacle

with a consistent velocity.

To use the LiDAR data effectively as the sole input source, we applied a simple CropBox filter to

retain only the points in front of the robot for elevation mapping. Meanwhile, the full 360° point cloud was

used as input to FAST-LIO2, allowing it to capture environmental features in all directions. This front-facing

filter helped exclude nearby moving objects—such as team members—from affecting the elevation map. It

also reduced erroneous high-elevation readings from objects like the undersides of desks and tables, which

occasionally distorted the torso orientation map due to the large smoothing kernel used in its generation.

The impact of this filtering process is shown in Figure 4.2.

39



Figure 4.1: Experimental mounting setup of Livox Mid-360, Intel NUC i7 11th gen, and power supply on
the Unitree Go1

Figure 4.2: Comparison between the filtered front-facing point cloud used for elevation mapping and the full
360° point cloud used as input to FAST-LIO2

40



4.1.1.2 Results and Discussion

In the absence of FAST-LIO2, the robot’s odometry (and consequently the elevation map) exhibited

significant drift laterally as the robot approached the elevated plane. This drift consistently led the robot to

misstep while attempting to ascend the platform, resulting in catastrophic failure.

Conversely, when FAST-LIO2 odometry was used in the state estimator, the odometry and elevation

map closely aligned with the robot’s actual position and orientation. As a result, the robot reliably placed its

first step correctly onto the obstacle. Additionally, the robot was able to maintain a correct representation

of the elevated plane while ontop of the obstacle, allowing it to descend the obstacle using only historical

data.

An important finding in this testing is that the IMU data had a lot of drift and inconsistencies,

and the fact that SLAM corrected it during fast movements (for example, climbing up a flight of stairs)

resulted in the state-estimate “jumping” and throwing off the planned trajectories. As seen in FIGURE, the

estimated base frame of the robot is significantly altered during upward movement, which then is corrected

by the FAST-LIO2 odometry measurement. Due to this inconsistency during fast vertical movements, we

had many failures possibly due to this issue during staircase climbing, but not during single platform or

multi-platform trials. We explore these results more in Section 4.3.2.

These findings demonstrate that incorporating FAST-LIO2 was crucial for maintaining accurate

odometry and improving the success rate of platform and stair climbing in our trials. FAST-LIO2’s tightly-

coupled fusion of IMU and LiDAR data at high frequency significantly mitigated the drift issues encountered

with legged and inertial odometry, particularly in the lateral (X, Y) directions. This fusion removed long-

term drift from state estimation and maintained spatial alignment between the robot’s perceived environment

and the physical terrain.

The importance of exteroceptive odometry is further amplified in our case, where the Livox Mid-360

LiDAR serves as the only sensor input for both localization and mapping. Due to the forward-facing and

limited field of view configuration, the elevation map immediately around the robot is predominantly based

on historical LiDAR measurements. Without accurate odometry, this historical data cannot be correctly

integrated as the robot advances, leading to misalignment between the robot’s assumed position and the

true location of the elevated surfaces. This mismatch ultimately results in catastrophic failures, as observed

in the trials without FAST-LIO2.

Currently, FAST-LIO2 operates somewhat as a detached system, providing pose estimates at ap-

41



proximately 10 Hz, which we integrate into the robot’s high-frequency (400 Hz) Extended Kalman Filter

(EKF). These pose updates are incorporated as asynchronous position and orientation measurements upon

arrival, complementing the EKF’s continuous propagation from internal IMU and leg odometry sources.

While this integration significantly reduces drift, it is not fully time-synchronized or tightly coupled with the

filter’s prediction cycle. Future work could explore tighter fusion strategies, potentially integrating FAST-

LIO2 outputs at a higher frequency or leveraging more predictive interpolation to bridge the gaps between

updates and further enhance real-time state estimation.

These experiments exemplify the critical role of precise odometry when using sparse or forward-

focused perception systems. Additionally, they suggest that further improvements could be achieved by

expanding the field of view or incorporating additional exteroceptive sensors such as rear or side-mounted

LiDARs, or other visual odometry systems. Such enhancements could provide better situational awareness,

especially when navigating complex terrains with abrupt elevation changes.

4.1.2 Sensor Configurations

4.1.2.1 Experimental Setup

We 3D printed and assembled the two LiDAR mount modules described in Section Section 3.3.3.

For each of the configurations, we ran the legged perceptive pipeline on the robot while standing on flat

ground with our demo stair about one meter in front of it. We simultaneously visualized the elevation map

in RViz for observational analysis.

4.1.2.2 Results and Discussion

Our test with the adjustable mount quickly revealed some major issues. The elevation map faced

a large amount of noise, and most of the cells had a high height variance. Flat surfaces were not recognized

as flat, but instead as bumpy surfaces with spikes and holes. We observed that the physical LiDAR mount

visibly shakes during use, and the screw that is used for re-adjustment needed to be re-tightened frequently.

Rapid spinning of the LiDAR causes constant vibrations, and the adjustable mount we designed was clearly

not strong enough to hold.

Our test with the angled mount resulted in a much more stable elevation map, with few bumps on

surfaces that should be flat. The mount itself was not shaking in spite of the LiDAR’s vibrations. The range

of the map was sufficient to observe the entire stair as well. We decided to select the stable angled mount

42



shown in figure Figure 4.1 because of these reasons

4.1.3 Usage of GPU Acceleration

4.1.3.1 Experimental Setup

To test the effectiveness of GPU acceleration for the full pipeline, we ran legged perception with

the D435i in simulation on the Intel NUC and Jetson Orin NX described in section Section 3.3.1. We used

the RealSense D435i because the corresponding sensor simulation software requires fewer resources to run

than the Livox Mid-360 LiDAR. We could then have a more clear picture of how the program would run

on the physical robot. The pipeline that we run on the Jetson is the same as the one on the NUC, except

it uses the GPU-accelerated version of elevation mapping described by [4]. To conduct this experiment, we

simply have the simulated robot trot forward about one meter in an empty world.

4.1.3.2 Results and Discussion

The Jetson produced an astoundingly low map refresh rate of about 2 hertz. The NUC outputs

an elevation map at about 10 hertz. Both the perceptive and control pipelines are CPU-intensive processes.

The major decrease in refresh rate is probably due to differences in the processors of the NUC and the

Jetson. In addition, we planned to integrate SLAM into the perception pipeline, which would increase the

computational load put on the CPU. GPU acceleration is most effective when processing larger point clouds,

as in [4], and we use a crop box to filter out irrelevant points before performing elevation mapping processing,

which means that in our live pipeline, we would not be gaining the full advantage of the feature anyway.

These factors combined led to our choice to use the Intel NUC with no GPU acceleration in our final pipeline.

4.2 Controls

4.2.1 Footstep Planning

4.2.1.1 Experimental Setup

The experiments for FPOWR were done in simulation. Computational efficiency is critical to ensure

that footsteps can be generated faster than in real-time for an MPC. Because of this, we focus on improving

the overall solve time of the FPOWR and improving the quality of the generated trajectories.

43



We chose to test on terrain data that most closely represents what the robot will encounter in the

real world. We created a ROS bag file containing real perception data of the robot in front of a staircase.

Using this data allowed our tests to be consistent and exactly represent what FPOWR would see when

deployed to the robot.

To evaluate FPOWR, we tested different combinations of terrain (flat and staircases) with four

different solvers: SNOPT, IPOPT with Mumps, IPOPT with HSL-MA57, and IPOPT with HSL-MA97 (See

Section 2.2.4 for more details). We compare their solve times and describe the quality of their generated

trajectories. It is important to note that the most important product of the FPOWR is the contact sequence,

but that is much harder to analyze, and it is directly influenced by the robot trajectory.

4.2.1.2 Results and Discussion

All tests were run on a computer with an Intel i7-6700K CPU (4 core, 8 thread, 4.0 GHz). The

solve times listed for different combinations of terrain and gait optimization settings are shown in Figure 4.3.

All of the solvers converged to visually identical solutions for each problem, so only one example trajectory

is shown for each of the test environments. The sample trajectory for walking on flat ground can be seen

in Figure 4.4, and stair climbing can be seen in Figure 4.5. Both of these figures have corresponding videos

linked. Example images and videos were not provided for the other solvers because they all converge to

nearly identical results.

These results show a stark difference in solve times between the tested solvers. We have chosen

to move forward with IPOPT with HSL-MA97 for this project. This is because of its superior solve time

in more complicated problems, and its solution quality is on par with the others. Despite this, FPOWR

remains usable with any compatible solver, so for users without a license to HSL-MA97, Mumps can be used

instead.

We believe these results are promising, but the solution time still has room for improvement. The

solve time for the footstep planner module has to be faster than the actions that the robot will perform—in

order to stay ahead of the real world. Ideally, this module would run as quickly as possible to not interrupt

other functions on the Intel NUC. The CPU this module was tested on is slightly worse performing than the

NUC, but it was also not running any other background tasks at the same time.

4.2.2 Contact Estimation

The experiments for contact estimation were conducted both in simulation and in real scenarios.

44



(a) Solve times for 1m of straight movement over flat
ground in 2s without gait optimization.

(b) Solve times for 1m of straight movement over flat
ground in 2s with gait optimization.

(c) Solve times for climbing 1, 7” step in 2s without
gait optimization.

(d) Solve times for climbing 1, 7” step in 2s with gait
optimization.

Figure 4.3: Solve times for Mumps, HSL57, and HSL97 on flat ground and stairs, and with and without gait
optimization

Figure 4.4: Resultant trajectory from HSL-
MA57 after commanding the robot forwards 1m
on flat ground in 2s with gait optimization. A
video can be seen here.

Figure 4.5: Resultant trajectory from HSL-
MA57 after commanding the robot to climb 1,
7” step in 2s with gait optimization. A video can
be seen here.

45

https://youtu.be/IgPRqs3JzQA
https://youtu.be/Kz3hbKJc6Cs


4.2.2.1 Simulation Experiments

For experiments in simulation, a controller with perfect odometry was used to confirm the accuracy

of the contact estimation. Initially, various cutoff frequencies were compared against the unfiltered general-

ized observer to determine the best cutoff frequency. The chosen cutoff frequencies were 5, 15, 100, and 500

Hz, corresponding to z-domain poles of 0.995, 0.985, 0.904, and 0.606, respectively.

The contact estimation was compared against a perfect contact sensor as a control. The con-

tact estimation was tested on multiple terrains with varying levels of flatness. Both perception-aware and

perception-less contact estimation were employed and compared using the ground truth from the simulated

contact sensors through rqt_plot. The results are reported on flat ground and while climbing stairs for a

Go1 robot with a trotting gait switching every 0.3 seconds with a swing height of 0.08 meters.

The result of various cutoff frequencies was measured for the generalized momentum observer and

compared against the unfiltered input. The forces measured from one contact are reported in Figure 4.6,

Figure 4.7, Figure 4.8, and Figure 4.9. The results appear to suggest that lower frequencies most closely

follow the raw measurement and higher frequencies filter the data more, although this is not always ideal

because in areas of high measurement change, the filter does not always conform closely to the average

value. This can likely be changed with higher orders of low-pass filter, but this comes with an associated

delay in contact detection, which can somewhat be seen in the compared measurements and becomes more

pronounced with increased order of the low-pass filter. This delay is not ideal for instantaneous contact

detection and therefore, the higher-order low-pass filter was not implemented. Notably, the difference in

cutoff frequency did not seem to significantly change the timing of the detection contact or contact loss.

46



Figure 4.6: Raw input vs. low-pass filtered input with 5 Hz cutoff frequency.

Figure 4.7: Raw input vs. low-pass filtered input with 15 Hz cutoff frequency.

47



Figure 4.8: Raw input vs. low-pass filtered input with 100 Hz cutoff frequency.

Figure 4.9: Raw input vs. low-pass filtered input with 500 Hz cutoff frequency.

The contact detection was initially compared in simulation between the contact sensor and the

generalized momentum observer. The difference between the ground truth contact sensor and the output of

the generalized momentum observer is reported in Figure 4.10. The generalized momentum observer appears

to detect contact and loss of contact slightly before the ground truth. Although we could alter this to exactly

fit the ground truth in sim by changing the hysteresis values, we opted to avoid potentially overfitting the

hysteresis because the difference between the measurement and ground truth was on average 10 milliseconds.

Furthermore, this never seemed to affect the robot’s movement in simulations or in reality.

48



Figure 4.10: Contact estimation from the generalized momentum observer vs ground truth

The contact detection on a flat plane is composed of the probability of contact given the foot height,

gait timing, and force measurements. The breakdown of each probability and its contribution to the overall

probability of contact is plotted in Figure 4.11 for a series of contacts with variables µc0 , µc0 = 0, µc0 , µc0 = 1,

σc0 , σc0 , σc1 , σc1 = 0.05, µzg = 0.02, σzg = 0.075, µfc = 30, and σfc = 15. Notably, the probability of contact

given gait timing rises and falls at nearly the same time as the probability of contact given foot force. With

the two changing drastically at nearly the same time, they compose the largest contribution to whether

contact has been made. The probability of contact given height, on the other hand, never truly reaches its

maximum or minimum value on flat terrain. Instead, the probability of contact given reaches its lowest when

the leg is at the highest point of the swing and reaches its highest when the leg has been placed down, but

does not peak abruptly like the other two probabilities. The probability of contact given height tends to

rise before the other two probabilities and persist high after they have fallen. This is because to the Bezier

curve of the swing leg trajectory requires time to accelerate, leaving the swing leg vertically near the point

of contact even though contact is no longer being made. With this understood, the probability of contact

given height serves as more of a baseline that must be satisfied before contact is believed to have been made.

49



Figure 4.11: Contact estimation and its component parts

The baseline that is provided by the probability of contact given foot height explains why perception

data is so important to detecting contact when the terrain is no longer flat. Figure 4.12 demonstrates the

necessity of incorporating perception data into the height element of the contact estimation. When the robot

walks up a stair with a height of 0.1 m, the probability of contact given height for a front leg can be seen

decreasing between the ground plane and the stair. This leads to a lower overall probability of contact.

With future steps, the decrease will become more pronounced. This decrease cannot be measured, however,

because of the instability in the back leg under the same conditions. In Figure 4.13, the contact estimation

of a back leg is reported. It can be seen that for this leg, the probability of contact given height increases

after the contact is made and stays high well after the contact is lost. In this case, the probability of contact

remaining high causes the contact to be detected past the ground truth, resulting in unstable applied forces,

and an unstable center of mass. This instability eventually causes the robot to fall.

50



Figure 4.12: Contact estimation of a front leg when going up stairs without vision

Figure 4.13: Contact estimation of a back leg when going up stairs without vision

Once the perception-based contact estimation has been integrated as in Equation 3.49 with param-

eters σj = 0.075 and o = 0.02, it can be observed that the probability of contact given height returns to

a normal baseline with the probabilities of contact resembling the contact estimation on a plane shown in

Figure 4.14. The vision instead incorporates the terrain data, which can be seen rising in the figure, allowing

the contact estimation to adjust to the terrain underneath it. Using this adapted contact estimation, the

51



robot was able to completely scale the stairs.

Figure 4.14: Contact estimation of a front leg going up stairs with vision

4.2.2.2 On-Robot Experiments

The on-robot experiments were conducted for both flat terrain and on stairs. The experiments were

conducted for both perception-less and perception-aware contact estimation and compared against a ground-

truth from high-speed camera footage. The time of contact from the camera footage was compared against

the time of contact as estimated by the contact estimation and the results are reported in Section 4.2.2. The

results are reported for a Go1 robot with a trotting gait switching every 0.3 seconds with a swing height of

0.08 meters.

On flat terrain while walking, the force readings were very consistent. The force, while in contact,

often averaged around 50 newtons of applied force and appeared to rise and fall with the real-world contact.

52



Figure 4.15: Force estimation real robot with 15 HZ cutoff frequency

The difference in contact between the real world and the robot’s belief was assessed by taking

high-speed video of the robot walking. The robot’s onboard lights were used to display the contact belief in

real-time. Top lights referred to the front leg, and the bottom lights referred to the back leg on each side.

Red light meant no contact was detected, and green light meant contact was detected. The light color was

then displayed against the real contact state. It was overall determined that there appeared to be no delay

between the real world contact and the robot’s contact belief.

Figure 4.16: Robot lights when there is no contact

53



Figure 4.17: Robot lights when contact is nearly made

Figure 4.18: Robot lights when both legs are in contact

Figure 4.19: Robot lights when contact has been lost

Overall, the robot was highly successful at detecting instantaneous contact. That considered,

54



improvements could be made when detecting slips. Ongoing experiments aim to improve the implementation

of perception as in Section 3.3.6 for slip detection on the edge of stairs. To accomplish this, we compared the

foot sensors to the proprioceptive force estimation to identify if the foot sensors could improve the contact

estimation. The force sensors were ultimately of a much higher magnitude, more delayed, noisier, and less

consistent than our proprioceptive force estimation. Therefore, the force estimation was used instead of the

force sensors, rather than including the force sensors in the Kalman filter.

Figure 4.20: The foot force sensors compared against the proprioceptive force estimation

4.3 Stair Climbing

By integrating the improved perception pipeline and perception-aware contact estimation onto the

robot, we were able to achieve partial success in climbing repeated inclined steps across various test setups.

4.3.1 Experimental Setup

To systematically evaluate the robot’s stair-climbing capabilities, we defined a series of test cases

with increasing difficulty. The final on-robot setup used the Livox Mid-360 LiDAR as input for both the

elevation mapping pipeline and the FAST-LIO2 SLAM package. We implemented the Legged Control

and Legged Perception frameworks [23], incorporating the perception-aware contact estimation detailed

in Section 3.4.2.

All trials used the Livox Mid-360 exclusively for both elevation mapping and SLAM. The onboard

NUC powered both the control and perception modules, running on the robot’s internal battery. Each

55



trial began with the robot positioned approximately two meters from the first obstacle, ensuring the entire

obstacle was captured by the forward-angled LiDAR.

The test environments varied in platform height, depth, and sequence complexity. Here, a “plat-

form” is defined as a flat surface large enough for the robot to place all four legs before ascending further.

In all trials, the robot was commanded to walk forward at a constant velocity of 0.4m/s. The setups are as

follows (see Figure 4.21 for visual reference):

1. Single platform, half-stair height (3.5 in)

2. Single platform, full-stair height (7.5 in)

3. Multiple platforms, half-stair height (4.5 in)

4. Two-step ascension to a platform, half-stair height (4.5 in)

5. Two-step ascension to a platform, full-stair height (7.5 in)

6. Multi-step ascension, full-stair height (7.5 in)

Figure 4.21: Comparison of final trial setups. From left to right: single full-stair platform, multiple half-stair
platforms, two half-height sequential platforms, and two full-height steps.

4.3.2 Results and Discussion

The robot successfully completed the following test cases:

1. Single half-height platform (3.5 in)

2. Single full-height platform (7.5 in)

3. Multiple half-height platforms (4.5 in)

4. Two-step ascension to a platform, half-height (4.5 in)

56



The robot failed in the following test cases:

5. Two-step ascension to a platform, full height (7.5 in)

6. Multi-step ascension, full height (7.5 in)

In the failed cases, the robot was able to ascend the first full-height step but could not place either

front foot on the next step. As a result, it attempted to step onto a nonexistent planar region, applying

force where no foothold existed, which led to catastrophic failure.

Based on our analysis of the failed trials, we believe the issues encountered in the final two test

cases stem primarily from limitations in the current planning architecture. Specifically, the static gait MPC

framework appears to lack sufficient solution space when the robot attempts to ascend a second full-height

stair in sequence. What tends to happen is the current footstep planner operates on a linear interpolation

based on the input velocity and goal position. The linear interpolation has no concept of the boundary area

and often places the footstep inside an unsteppable area. The trajectory optimizer then successfully maps the

linear footstep to a convex plane but this leaves the robot prone to significant changes when replanning. The

most common issue is therefore replanning the swing trajectory while late in climbing, forcing the planned

contact onto the previous step. With so little time, the swing leg is then accelerated the joints quickly to

reach the location, causing the leg to over-accelerate and trigger its own joint velocity shutdown criteria.

Moreover, while the footstep planner always plans contacts on the detected terrain, the swing leg planner

does not always seem to adequately satisfy this constraint in the z direction, although it gradually comes

to satisfy it as part of its updates. Overall, this causes the robot to rapidly accelerate its joints toward a

location hovering over the stairs, believing it can apply force there. Unable to do so, it falls.

We hypothesize that this failure arises due to the inability of the static planner to plan for the

changing elevation and limited foothold space of multi-step obstacles. In contrast, a more dynamic planning

framework, such as the FPOWR footstep planner described in Section 4.2.2, may be better suited to handle

these conditions. FPOWR’s ability to generate feasible contact sequences over complex terrain in real time

could allow the robot to maintain balance and progress even under tighter foothold constraints.

Despite FPOWR’s benefits, continuing to use a linear footstep planner may still be possible. If the

swing leg planner is corrected to more strongly force the swing leg onto the z location of a plane we believe

it could solve the falling issue. Moreover, the linear footstep planner could be constrained to only update

when all the robot’s legs are in contact. This would significantly limit the robot’s ability to replan if there

are large changes in the state estimation while climbing but with the contact estimation improvements, we

believe these may not be very necessary.

57



Additionally, we believe that fine-tuning the resolution of the elevation mapping and the inset

margins used in plane segmentation could increase the number of valid foothold candidates available to

the planner. Recent experiments suggest that our odometry and perception is good enough that inset

margins and even foot placement constraints may not be necessary and instead could be causing the footstep

planning issues. Adjustments would expand the feasible solution space, potentially preventing the planner

issues observed in sequential stair trials. Overall, we believe that improvements in both the perception and

control sections are likely required for robust multi-stair climbing.

58



Chapter 5

Conclusions

In this work, we have demonstrated a comprehensive framework enabling a Unitree Go1 quadruped

to perceive and traverse full-sized stairs in real time. Our key contributions include:

1. Enhanced Perception Pipeline

By utilizing the Livox Mid-360 LiDAR for elevation mapping and FAST-LIO2 SLAM, we substantially

reduced odometry drift and improved terrain mapping accuracy. These improvements enabled the

robot to correctly register and ascend obstacles that previously caused missteps, and to have the

ability to rely on historical map data if needed.

2. Dynamic Footstep Planning (FPOWR)

We developed FPOWR, a dynamic footstep planner built on top of the TOWR trajectory optimizer.

FPOWR generates kinematically feasible footholds on convex terrain regions, with the ability to provide

initial guesses to the MPC for a faster control loop.

3. Perception-Aware Contact Estimation (PACE)

By fusing generalized‐momentum observer outputs with foot height, gait timing, and local map con-

fidence values, our PACE module adapts the probability of contact to the measured terrain beneath

each foot. This robust estimation improved foothold reliability, especially on irregular surfaces.

4. Experimental Validation

Hardware trials verified the system’s capability to climb:

• Single half-height (3.5 in) and full-height (7.5 in) platforms

59



• Multiple sequential half-height platforms

• Two-step ascent to a half-height platform. However, the static gait MPC struggled when attempt-

ing two consecutive full-height steps, slipping on the second ascent due to limited solution space

in the current planner

Overall, our framework unites perception, planning, and control to enable real-time stair climbing in

complex environments. The results highlight both the efficacy of our pipeline and the remaining challenges,

particularly in multi-step full-height ascension, that motivate future enhancements.

60



Chapter 6

Future Work

6.1 FPOWR Integration with Galileo

One of the reasons for developing FPOWR was to enable the use of custom trajectory optimization

frameworks in an MPC context, such as Galileo. Galileo is an open-source trajectory optimization framework

that utilizes pseudospectral collocation (See Section 2.2.1 for more details). Specifically, Galileo uses the

Legendre-Gauss-Radau (LGR) pseudospectral collocation method [49]. It is a lightweight, extensible, and

efficient C++ library developed by the previous year’s BiQu team. There is also a updated version of Galileo

currently being developed. Galileo is designed to be used in an MPC context and can achieve high-fidelity

plans at 50 Hz for 2-second horizons. For these reasons, it would be an excellent candidate to replace OCS2 in

the currently employed pipeline, as described in Section 3.2. Making this swap and adding in the additional

lower-level controllers used by last year’s team (whole body controller, joint controller, state estimator)

would result in the system diagram proposed for future work, Figure 6.1. This would be beneficial because

it would allow for greater control over the full system, leaving room to implement custom gait and footstep

generation.

Another benefit of FPOWR, as mentioned in Section 3.4.1.4, is using the trajectory generated from

TOWR as an initial guess for the MPC trajectory optimizer, allowing for faster computation. TOWR uses

a single rigid-body dynamic model, which assumes that the legs have negligible inertia (Section 2.2.3). On

the other hand, Galileo uses a more complex centroidal momentum dynamic model, which accounts for the

inertia of the legs influencing the robot’s center of mass. Note that some literature refers to the single rigid-

body model as ”centroidal dynamics,” which is not to be confused with ”centroidal momentum dynamics.”

61



Figure 6.1: Proposed Control and Perception Hierarchy of the Go1

62



This means that trajectories from towr using the simpler single rigid-body model can be computed quickly

and then fed into Galileo to be calculated at a higher fidelity.

6.2 FPOWR Improvements

FPOWR could be improved by adjusting the representation of end-effector bounding boxes. In-

ternally, TOWR represents the region of possible end-effector positions by placing an axis-aligned bounding

box (AABB) centered on each end-effector’s position in the robot’s nominal stance (Figure 6.2). AABBs

allow for fast kinematic feasibility checks, but they only represent a subset of the true reachable end-effector

positions. For normal use cases, these AABBs represent a large enough subset of the reachable positions to

achieve natural motion. However, the AABBs introduce issues during steep stair climbing because they limit

the end-effector positions more severely than what is truly kinematically feasible on the robot. Specifically,

when attempting to climb staircases greater than 45°, the robot model is unable to place its hind legs far

enough back to stabilize itself. This issue is only present within simulation because the robot’s hip range of

motion is not accurately captured with the AABBs. This issue can be fixed by modifying the mechanism

TOWR uses to check for kinematic feasibility.

Additionally, FPOWR could also benefit from improved solver speeds. All footstep plan optimizers

need to compromise between model fidelity and solve time. FPOWR has taken the design philosophy of high

fidelity, optimizing the reduced order dynamics simultaneously with the footstep plan. Unfortunately this

leads to very slow computation times. Internally, TOWR is also capable of optimizing the contact sequence,

but it reduces the solve times to slower than real time, severely limiting its use. Speeding up TOWR to the

point that contact sequences can also be optimized would provide immense benefit to both FPOWR and

BiQu. Another viable option for the future of FPOWR would be to replace TOWR with a stochastic solver

or a faster optimization library.

6.3 Retrospective SLAM Fusion with Time-Offset Compensation

Another promising direction for future work involves the retrospective alignment of SLAM odometry

from FAST-LIO2. As discussed in Section 2.1.2, we observed that FAST-LIO2 occasionally produced pose

estimates with timestamps up to 20 milliseconds in the past, due to its internal processing delay. This

discrepancy can introduce a mismatch between the robot’s most recent state estimate and the delayed

SLAM output, particularly during fast movements. By implementing a retrospective fusion strategy [50],

63



Figure 6.2: TOWR robot model. Shows single rigid body dynamics, foot friction cones, and range of motion
constraints overlaid on the ANYmal model for example purposes. [7]

where past robot odometry updates are corrected using the newly available but delayed SLAM poses, we

can more accurately align SLAM-derived localization with the robot’s real-time motion. This could reduce

lag in localization, smooth out discontinuities in the fused trajectory, and improve overall state estimation

quality.

6.4 Usage of Internal Robot Components

The Unitree Go1 robot contains multiple resources that are not currently being fully utilized. There

are several ways that we could take advantage of the onboard cameras. On startup, the internal SDK runs the

robot’s cameras and publishes their outputs on the local ROS Master. This output could be transferred to

the NUC and integrated into our perception pipeline. Additionally, the SDK could be saved, duplicated, and

manipulated to give the users control of whether cameras are off or on. This has already been accomplished

with the Go1’s face lights, but the camera SDK appears less documented but significantly more valuable.

The limited documentation makes the task more difficult, but incredibly beneficial since it would pave the

way for people to take advantage of other internal sensors on the Go1 and enable computer vision to develop

a better understanding of the environment. Another important robot component that we do not use is the

GPU on the robot’s main Jetson. Due to the Jetson’s software version, setting up a small subsection of the

perception pipeline to run on it would not be possible. In order to take advantage of it, the robot would need

to be disassembled, and then a user would have to flash the Jetson to a newer version with a compatible

64



Ubuntu and ROS version from their computer. Then, one could set the internal Jetson up to connect to

the NUC automatically, and run the GPU-accelerated Elevation Mapping node. Since the Jetson would not

be hindered by any CPU-intensive processes that would be run on the NUC, this could potentially increase

the refresh rate of various elements of our pipeline. These potential methods could greatly improve the

capabilities of our robot.

6.5 Perception-Aware Contact Estimation (PACE)

PACE needs more data to support its efficacy. While we have successfully demonstrated our ability

to incorporate perception data into our probability of contact given height, our dynamic weight of Kalman

variances has not been tested, and its ability to detect slips has not been confirmed. We plan to collect

more data, develop an experimental method for inducing a slip on the edge of a stair, and tune the Kalman

variances for the elements of detection. Additionally, future groups may be interested in using machine-

learning to detect high-slip likelihood areas using perception data.

65



References

[1] Livox Technology Co., Ltd., Livox Mid-360 User Manual, 2024. Retrieved from https://www.livoxtech.
com/mid-360/downloads.

[2] Intel RealSense, “Depth camera d435i,” 2024. Accessed: 2024-12-12.

[3] P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki, and M. Hutter, “Robust Rough-Terrain Loco-
motion with a Quadrupedal Robot,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), (Brisbane, QLD), pp. 5761–5768, IEEE, May 2018.

[4] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and M. Hutter, “Elevation mapping
for locomotion and navigation using GPU,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2273–2280. ISSN: 2153-0866.

[5] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart, “Robot-centric elevation mapping
with uncertainty estimates,” in International Conference on Climbing and Walking Robots (CLAWAR),
2014.

[6] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive locomotion through non-
linear model-predictive control,” vol. 39, no. 5, pp. 3402–3421.

[7] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory optimization for legged
systems through phase-based end-effector parameterization,” vol. 3, no. 3, pp. 1560–1567.

[8] R. Tedrake, Underactuated Robotics. 2023.

[9] DroneBlocks, “Unitree go1 stair climbing mode.”

[10] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast, robust quadruped locomo-
tion over challenging terrain,” in 2010 IEEE International Conference on Robotics and Automation,
pp. 2665–2670, 2010.

[11] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over
challenging terrain,” Science Robotics, vol. 5, Oct. 2020.

[12] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter, “Perceptive locomotion in rough terrain
– online foothold optimization,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5370–5376,
2020.

[13] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao, “Deep learning for image and point cloud
fusion in autonomous driving: A review,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 2, pp. 722–739, 2022.

[14] O. A. V. Magana, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi, M. Pontil, D. G. Caldwell, and
C. Semini, “Fast and continuous foothold adaptation for dynamic locomotion through cnns,” IEEE
Robotics and Automation Letters, vol. 4, p. 2140–2147, Apr. 2019.

66

https://www.livoxtech.com/mid-360/downloads
https://www.livoxtech.com/mid-360/downloads


[15] Z. Jian, Z. Yan, X. Lei, Z. Lu, B. Lan, X. Wang, and B. Liang, “Dynamic control barrier function-
based model predictive control to safety-critical obstacle-avoidance of mobile robot,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3679–3685, IEEE.

[16] H. Xie, C. Cui, X. Zhong, X. Zhong, and Q. Liu, “Real-time support terrain mapping and terrain
adaptive local planning for quadruped robots,” vol. 9, no. 12, pp. 11018–11025.

[17] K. Ma, Z. Sun, C. Xiong, Q. Zhu, K. Wang, and L. Pei, “IMOST: Incremental memory mechanism with
online self-supervision for continual traversability learning,”

[18] M. Liu, J. Xiao, and Z. Li, “Deployment of whole-body locomotion and manipulation algorithm based on
NMPC onto unitree go2quadruped robot,” in 2024 6th International Conference on Industrial Artificial
Intelligence (IAI), pp. 1–6, IEEE.

[19] M. Labbé and F. Michaud, “RTAB‐map as an open‐source lidar and visual simultaneous localization
and mapping library for large‐scale and long‐term online operation,” vol. 36, no. 2, pp. 416–446.

[20] I. Hroob, R. Polvara, S. Molina, G. Cielniak, and M. Hanheide, “Benchmark of visual and 3d lidar SLAM
systems in simulation environment for vineyards,” in Towards Autonomous Robotic Systems (C. Fox,
J. Gao, A. Ghalamzan Esfahani, M. Saaj, M. Hanheide, and S. Parsons, eds.), vol. 13054, pp. 168–177,
Springer International Publishing. Series Title: Lecture Notes in Computer Science.

[21] J. Jorge, T. Barros, C. Premebida, M. Aleksandrov, D. Goehring, and U. J. Nunes, “Impact of 3d
LiDAR resolution in graph-based SLAM approaches: A comparative study.”

[22] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast direct LiDAR-inertial odometry,”
vol. 38, no. 4, pp. 2053–2073.

[23] Q. Liao, B. Zhang, X. Huang, X. Huang, Z. Li, and K. Sreenath, “Berkeley humanoid: A research
platform for learning-based control,” 2024.

[24] M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pajovic, E. Jelavic, S. Coros,
and M. Hutter, “Offline motion libraries and online MPC for advanced mobility skills,” vol. 41, no. 9,
pp. 903–924.

[25] G. Bellegarda and K. Byl, “Trajectory optimization for a wheel-legged system for dynamic maneuvers
that allow for wheel slip,” in 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 7776–7781,
2019.

[26] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic quadruped locomotion via
whole-body impulse control and model predictive control,”

[27] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization,”
in 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 279–286, IEEE.

[28] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G. Caldwell, J. Cappelletto,
J. C. Grieco, G. Fernandez-Lopez, and C. Semini, “Simultaneous contact, gait and motion planning for
robust multi-legged locomotion via mixed-integer convex optimization,” pp. 1–1.

[29] M. Kelly, “An introduction to trajectory optimization: How to do your own direct collocation,” vol. 59,
no. 4, pp. 849–904.

[30] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained
optimization,” vol. 12, no. 4, pp. 979–1006. Publisher: Society for Industrial and Applied Mathematics.

[31] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming,” vol. 106, no. 1, pp. 25–57.

[32] J. T. Betts, “Survey of numerical methods for trajectory optimization,” vol. 21, no. 2, pp. 193–207.

67



[33] D. Pardo, L. Moller, M. Neunert, A. W. Winkler, and J. Buchli, “Evaluating direct transcription and
nonlinear optimization methods for robot motion planning,” vol. 1, no. 2, pp. 946–953.

[34] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti,
S. Vijayakumar, and N. Mansard, “Crocoddyl: An efficient and versatile framework for multi-contact
optimal control,” in 2020 IEEE International Conference on Robotics and Automation (ICRA),
pp. 2536–2542, IEEE.

[35] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2024.

[36] “GNU Linear Programming Kit.”

[37] M. Berkelaar, K. Eikland, and P. Notebaert, “lp_solve: Open source (mixed-integer) linear program-
ming system,” 2004. Version 5.1.0.0 dated 1 May 2004. Multi-platform, pure ANSI C / POSIX source
code, Lex/Yacc based parsing. Licensed under the GNU LGPL (Lesser General Public License).

[38] D. Song, P. Fernbach, T. Flayols, A. D. Prete, N. Mansard, S. Tonneau, and Y. J. Kim, “Solving
footstep planning as a feasibility problem using l1-norm minimization (extended version),” vol. 6, no. 3,
pp. 5961–5968.

[39] H. Xue, C. Pan, Z. Yi, G. Qu, and G. Shi, “Full-order sampling-based MPC for torque-level locomotion
control via diffusion-style annealing.”

[40] Robotic Systems Lab: Legged Robotics at ETH Zürich, “Tutorial: Gait and trajectory optimization for
legged robots.”

[41] A. W. Winkler, “Ifopt - A modern, light-weight, Eigen-based C++ interface to Nonlinear Programming
solvers Ipopt and Snopt.,” 2018.

[42] Science and Technology Facilities Council, “Coin-HSL.”

[43] Unitree, Go1Software Manual. Unitree.

[44] J. Hwangbo, C. D. Bellicoso, P. Fankhauser, and M. Hutter, “Probabilistic foot contact estimation by
fusing information from dynamics and differential/forward kinematics,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 3872–3878, 2016.

[45] M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D. G. Caldwell, and C. Semini, “Prob-
abilistic contact estimation and impact detection for state estimation of quadruped robots,” IEEE
Robotics and Automation Letters, vol. 2, no. 2, pp. 1023–1030, 2017.

[46] M. Maravgakis, D.-E. Argiropoulos, S. Piperakis, and P. Trahanias, “Probabilistic Contact State Esti-
mation for Legged Robots using Inertial Information,” 2023. Version Number: 2.

[47] G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim, “Contact model fusion for event-based locomotion in
unstructured terrains,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4399–4406, 2018.

[48] M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Siegwart,
“State Estimation for Legged Robots: Consistent Fusion of Leg Kinematics and IMU,” in Robotics:
Science and Systems VIII, The MIT Press, July 2013. _eprint: https://direct.mit.edu/book/chapter-
pdf/2266776/9780262315722_cac.pdf.

[49] D. Garg, M. Patterson, W. Hager, A. Rao, R. D. Benson, and G. T. Huntington, “An overview of three
pseudospectral methods for the numerical solution of optimal control problems,”

[50] Y. Sun, F. Jing, and Z. Liang, “Iterated extended kalman filter for time-delay systems with multi-sample-
rate measurements,” in Proceeding of the 11th World Congress on Intelligent Control and Automation,
pp. 4532–4536, 2014.

68


	Introduction
	Motivation
	Problem Statement

	Background
	Perception
	Robot-Centric Elevation Mapping
	Map Cell Updates
	GPU Acceleration

	SLAM in Combination with Robot-Centric Elevation Mapping
	Perceptive Locomotion Implementation on the Go1

	Control
	Trajectory Optimization
	Footstep Planners
	Trajectory Optimizer for Walking Robots (TOWR)
	Nonlinear Programming Solvers
	Contact Estimation
	Odometry


	Design and Implementation
	Project Objectives
	System Pipeline
	Perception
	Hardware Details
	Wireless Hardware Upgrades
	Hardware Mounting Solutions
	Elevation Mapping Fusion and Sensor Integration
	Improving Odometry Using LiDAR
	Exposed Region Data for MPC Integration

	Control
	Footstep Plan Optimizer for Walking Robots (FPOWR)
	Heightmap Representation
	Output Plane Reconstruction
	ROS Integration
	Using Initial Guesses for MPC Speedup

	Contact Estimation
	Force Observation
	Kalman Prediction - Gait Timing
	Kalman Update - Foot Height and Force
	Kalman Update - Foot Sensor Force

	Perception-Aware Contact Estimation (PACE)

	Containerization

	Results and Discussion
	Perception Pipeline
	Drift Reduction
	Experimental Setup
	Results and Discussion

	Sensor Configurations
	Experimental Setup
	Results and Discussion

	Usage of GPU Acceleration
	Experimental Setup
	Results and Discussion


	Controls
	Footstep Planning
	Experimental Setup
	Results and Discussion

	Contact Estimation
	Simulation Experiments
	On-Robot Experiments


	Stair Climbing
	Experimental Setup
	Results and Discussion


	Conclusions
	Future Work
	FPOWR Integration with Galileo
	FPOWR Improvements
	Retrospective SLAM Fusion with Time-Offset Compensation
	Usage of Internal Robot Components
	Perception-Aware Contact Estimation (PACE)

	References

