
Development of a 4-DOF Serial Robotic Manipulator for
Pick-and-Place Applications

Kai Nakamura, Owen Sullivan, and Evan Carmody

Abstract—This paper presents our development of a 4-DOF
serial robotic manipulator designed for pick-and-place tasks. We
discuss robot kinematics, camera calibration, transforming 2D
pixel coordinates into 3D world coordinates, object detection
and classification, and object localization challenges. We conclude
with insights about our final system and discuss is applicability
in the field of robotics.

I. INTRODUCTION

Our primary goal was to create a ball-sorting robot using
a robotic arm and a camera. A variety of colored, 3D-printed
balls are arbitrarily placed on the workspace, and the robot is
tasked with locating the balls and determining the trajectory
to grab and sort the different colors. This project required
us to explore and implement forward kinematics, inverse
kinematics, trajectory generation, and a robust computer vision
system.

The robotic arm we used was the OpenMANIPULATOR-
X, an open-source and low-cost serial manipulator [1]. The
OpenMANIPULATOR-X has four revolute joints and four
degrees of freedom. The camera we used was a standard USB
webcam [2]. The camera we picked used a wide-angle fisheye
lens which we had to account for in Section II-C.

II. METHODOLOGY

A. Forward Kinematics

In order to control our robotic arm and move it around the
workspace, we needed to solve the forward kinematics of our
robot so we could determine the end-effector position given
the current joint angles. We used the Denavit-Hartenberg (DH)
convention to model the forward kinematics of our arm [3]. We
started by assigning frames of reference to each of the joints
(F1, F2, F3, and F4) as well as the base of the robot (F0) and
the end-effector (F5) as shown in Fig. 1. Note that the frames
F0 and F1 coincide with one another. From these frames, we
found the DH parameters of the OpenMANIPULATOR-X and
used them to calculate the transformation matrices between
each of the joints (Table I).

TABLE I: Denavit-Hartenberg (DH) Parameters of the
OpenMANIPULATOR-X

T i+1
i θ [rad] d [mm] a [mm] α [rad]

T 2
1 θ∗1 96.326 0 π

2

T 3
2 θ∗2 + tan−1(128

24
) 0 130.23 0

T 4
3 θ∗3 − tan−1(128

24
) 0 124 0

T 5
4 θ∗4 0 133.4 0

Fig. 1: Denavit-Hartenberg (DH) Reference Frames of the
OpenMANIPULATOR-X

Multiplying all of the transformation matrices together will
produces a single transformation matrix between the base
frame of the robot to the end-effector (1). This final transfor-
mation matrix is the forward kinematics solution for our robot
since it contains the end-effector’s position and orientation
relative to the base frame of the robot. Equation 2 shows
the forward kinematics solution for the position of the end-
effector. Note that s and c are short for sin and cos, and that
θ23 and θ234 are short for θ2 + θ3 and θ2 + θ3 + θ4.

T 5
0 = T 1

0 · T 2
1 · T 3

2 · T 4
3 · T 5

4 (1)

p⃗ee =

 c(θ1)[133c(θ234) + 124c(θ23) + 130s(θ2)]
s(θ1)[133c(θ234) + 124c(θ23) + 130s(θ2)]
96.3 + 133s(θ234) + 124s(θ23) + 130s(θ2)

 (2)

B. Inverse Kinematics

Forward kinematics is great for figuring out where the end-
effector is from the given joint angles. But in order to pick
up balls at a given position, we need to be able to work
backwards to find the desired joint angles. This is where
inverse kinematics comes into play.

Unfortunately, calculating the inverse kinematics is a lot
more complicated because there might be multiple or even
infinite solutions for a single position. There might even be
no solutions if the position isn’t reachable. But, the general
idea is to use trigonometry to calculate possible joint angles,
and then plug those values back into the forward kinematics
to see which configurations actually work.

Since the given position has three coordinates (x, y, and z)
and there are four unknown joint angles, the angle α is also
provided to make the problem solvable where α is the angle
between the end-effector and the xy-plane.

From Fig. 2:

r =
√
x2
c + y2c

r cos(θ1) = xc

D1 = cos(θ1) =
xc

r

θ1 = atan2(±
√
1−D2

1, D1)

(3)

Fig. 2: Diagram of the Robot at an Arbitrary Pose

From Fig. 3:

x24 = r − L4 cos(α)

z24 = zc − L1 − L4 sin(α)

Using the Law of Cosines:

cos(π − θ3) =
L2
2 + L2

3 − (x2
24 = Z2

24)

2L2L3

D3 = cos(θ3) = −L2
2 + L2

3 − (x2
24 = Z2

24)

2L2L3

θ3 = atan2(±
√
1−D2

3, D3)

(4)

Using the Law of Cosines:

Dβ = cos(β) =
L2
2 + (x2

24 = Z2
24)− L2

3

2L2

√
x2
24 = Z2

24

β = atan2(±
√
1−D2

β , Dβ)

(5)

Dϕ = cos(ϕ) =
x24√

x2
24 + y224

ϕ = atan2(±
√
1−D2

ϕ, Dϕ)

(6)

θ2 = ϕ− β (7)

θ4 = α− θ2 − θ3 (8)

Fig. 3: Diagram of Joints 2, 3, and 4 from the XR-Plane

Equations for θ1, θ2, θ3, and θ4 all use atan2 to solve for
all possible solutions of inverse kinematics. Not all candidates
are valid solutions, in fact most are not. To determine which
combinations of joint angles are actually valid, we plug the
candiates back into the forward kinematics to see if the joint
angles bring the end-effector to the desired position.

C. Camera Calibration

Proper camera calibration is necessary to ensure accurate
and reliable visual perception of the workspace. The first step
of the camera calibration process is to remove any distortion
that the camera lens applies to the image. The camera we
used has a wide-angle fisheye lens that produced significant
distortion near the edges of the image. This distortion can
make objects appear stretched or warped which causes inac-
curacies in object detection and localization. Notice how the
straight red lines in Fig. 4 don’t line up with the edges of the
checkerboard.

To correct for this distortion, we used MATLAB’s Camera
Calibrator app to calculate our camera’s intrinsic parameters
and remove the effects of lens distortion. The Camera Calibra-
tor uses several calibration images each taken from a different
perspective to estimate various parameters such as the focal
length and lens distortion coefficients.

The Camera Calibrator detects the intersection points of the
checkerboard pattern and uses these to establish a correlation
between 2D pixel coordinates and 3D world coordinates. The

Fig. 4: Distorted image taken by a fisheye lens camera

app estimates the camera parameters by minimizing reprojec-
tion error which is the difference between the observed image
points and their projected world coordinates. For our set of
calibration images, the Camera Calibrator app was able to
estimate camera parameters that reduced the mean reprojection
error per image down to 0.51 pixels (Fig. 5).

Fig. 5: Mean reprojection error of calibration images

The Camera Calibrator’s estimated locations of the camera
from the calibration images can be seen in Fig. 6. These
estimations closely mirror the real world positions that our
calibration images were taken from as we moved our camera
around the checkerboard.

Once we had calculated the intrinsic parameters of the cam-
era, we could use them to remove the fisheye lens distortion.
Notice how the straight red lines in Fig. 7 now line up with
the edges of the checkerboard, unlike how they did previously
in Fig. 4.

Using the parameters of our calibrated camera, we could
then create a transformation matrix that converts 2D pixel
coordinates from an image and translates them into 3D world
coordinates that lie on the xy-plane of the checkerboard. This
transformation matrix is called, T checker

image , since it maps pixel
coordinates of the image to world points on the checkerboard.

Fig. 6: Estimated locations of the camera from the Camera
Calibrator app

Fig. 7: Undistorted image of the checkerboard

D. Camera-Robot Transformation

In order for the robot to pick up an object, it has to know
where the object is in respect to its origin. However, world
points obtained from the calibrated camera lie in the reference
frame of the checkerboard, Fchecker, and not in the reference
frame of the robot, F0 (Fig. 8). Points with respect to the
checkerboard can be transformed into points with respect to
the robot by finding the transformation matrix that maps frame
0 of the robot to the checkerboard frame, T checker

0 .
The transformation matrix between the robot and checker-

board can be calculated by finding the rotation and translation
between the robot and checkerboard. Equation 9 shows the
rotation matrix, Rchecker

0 , obtained by visual inspection of the
robot frame and checkerboard frame (Fig. 8). Equation 10

shows the translation matrix, p⃗ checker
0 , obtained by measuring

the distance between the origin of the robot and the origin
of the checkerboard. Equation 11 shows the final transforma-
tion matrix, T checker

0 , obtained by combining Rchecker
0 and

p⃗ checker
0 .

Rchecker
0 =

0 1 0
1 0 0
0 0 −1

 (9)

p⃗ checker
0 =

113
−95
0

 (10)

T checker
0 =

0 1 0 113
1 0 0 −95
0 0 −1 0
0 0 0 1

 (11)

Fig. 8: Reference frames of the robot (F0) and the checker-
board (Fchecker)

With T checker
0 from Section II-D and T checker

image from Section
II-C, 2D pixel coordinates from the image can now be fully
converted into 3D world coordinates in the reference frame of
the robot (12).

p⃗0 = T checker
0 · T image

checker · p⃗image

p⃗image = T checker
image · T 0

checker · p⃗0

p⃗image = T 0
image · p⃗0 (12)

E. Object Detection and Classification

Detecting objects from an image and classifying them re-
quires several stages of image processing to extract meaningful
information that can be used for decision-making. Each step of
an image processing pipeline performs a distinct operation that
enhances or extracts desired information or reduces irrelevant
details.

Our robot was designed to pick up small colored balls
(red, orange, yellow, green, and gray) and sort them based
on their color (Fig. 9). To achieve this, we created an image
processing pipeline that could extract the pixel coordinates of

each ball and classify its color. The gray colored balls proved
challenging to detect since they blend in with the white and
black checkerboard, unlike the other brightly colored balls.
This required us to develop a robust image pipeline capable
of identifying all five colors.

Fig. 9: Red, orange, yellow, green, and gray colored balls

However, there are some objects that even the most robust
image pipelines can’t detect. We were able to identify the gray
balls because they can still be differentiated against the white
and black checkerboard. It would be near impossible to detect
a white ball or black ball since it would completely blend in
with the checkerboard. Different colors that are very similar
can also cause difficulties if they are not easily discernible
from one another.

1) Brightness Equalization: The first step of our pipeline is
to equalize the brightness of the raw image. Later stages in the
pipeline rely heavily on predefined color thresholds which can
be thrown off if the brightness of the image changes due to
the ambient light in the room. To account for this, we apply
a histogram equalization to evenly distribute the brightness
of the image (Fig. 10). Brightness equalization will make an
underexposed image brighter and an overexposed image darker
so that the vision pipeline stays consistent no matter what the
lighting conditions are (Fig. 11).

2) Undistortion: We then undistort the fisheye lens using
the calibrated camera parameters from Section II-C. It is
important to perform this step after the brightness equalization
so that the black edges introduced from undistortion don’t
influence the brightness histogram.

3) Image Masking: Next, the image is color masked to
separate out the balls from the background. This operation
is done in the HSV color space which we found was the most
intuitive to work with. There are two filters applied to the
image, one for the colored balls and one for the gray ball.
Both filters are then combined with one another to get a mask
that contains all five colored balls.

We found the values for our filters by using MATLAB’s
Color Thresholder app. The colored ball filter removed colors
with low saturation and low values to get rid of the black and

(a) Brightness Histogram Without Equalization

(b) Brightness Histogram With Equalization

Fig. 10: Brightness Histograms With and Without Equalization

white checkerboard. This left behind only the brightly colored
balls, but also removed the gray balls.

To add the gray balls back in, a second filter band passes
only the mid-ranged values found in the gray ball. The outputs
of both filters combined creates a mask containing all the balls.

Under certain lighting conditions, some regions of the
checkerboard match the gray values found in the ball which
creates artifacts in the masked image. However, these artifacts
are cleaned up in the next step which is identifying circles.

4) Identifying Circles: To remove noise from the masked
image and pick out the colored balls, we used MATLAB’s
circle finding algorithm. We tried a variety of different ap-
proaches such as eroding the image and using edge detection,
but we found these methods unreliable. With MATLAB’s
imfindcircles function we were able to achieve very consistent
results even under different lighting conditions.

The circle finding algorithm requires more processing power
and so is slower than other methods. However, for our pur-
poses we only needed a single image of the workspace for

(a) Image Without Brightness Equalization

(b) Image With Brightness Equalization

Fig. 11: Images With and Without Brightness Equalization

each run. For live tracking of objects, we found it better to use
other methods such as erosion and edge detection for increased
speed.

5) Classifying Circles by Color: Next, we take each of
the identified circles and determine which of the five colors
(red, orange, yellow, green, or gray) it is closest to. The first
method we tried was finding the average color of the circle
and calculating its Euclidean distance to each of the expected
target colors. Then, whichever target color had the shortest
distance would be the color of that circle.

We tried this method in HSV, RGB, and L*a*b* color
spaces, but none of these produced the results we needed. This
method had a lot of trouble differentiating between similar
colors and was not reliable enough to be used.

Instead, we decided to use a different approach that was
more computationally expensive, but much more reliable. We
created five different color filters for each of the target colors.
Each of the color filters is applied to the circles one at a time.
Whichever color filtered circle contains the most pixels is the
most prevalent color of that circle. We found that this method
was the most reliable at differentiating between the different
colors.

F. Object Localization

At this stage in the image pipeline, we’ve obtained the
location of each ball and classified its color. There is one
last problem that needs to be addressed to get the location
of the ball. When the 2D pixel coordinates of the image are
transformed into 3D world coordinates, the image is projected

directly onto the xy-plane of the checkerboard. However, the
actual ball sits on top of the checkerboard with some fixed
height and is not lying flat on the checkerboard like a piece
of paper (Fig. 12).

(a) Illustration of projection error from side

(b) Illustration of projection error from top

Fig. 12: Illustrations of projection error from different per-
spectives

If this projection error is not accounted for, then the robot
will attempt to pick up the balls slightly behind where they
actually are on the checkerboard. To solve this issue, we
calculate the actual position of the balls by using similar
triangles:

d = D
h

H

dx = d
Dx

D
(13)

dy = d
Dy

D
(14)

Using the x and y offsets from 13 and 14, the actual position
of the object is obtained as seen in Fig. 13.

(a) Image for Object Localization

(b) Object Localization Visualization

Fig. 13: Object localization being run on image after image
processing pipeline, with accompanying visualization.

G. Pick-and-Place

At this point, we now had all the components we needed for
our pick-and-place system, we just needed to put everything
together. First, the arm is moved out of view of the camera
and the camera captures an image of the workspace. The
image is processed using our vision pipeline to pick out the
colored balls (Section II-E). The camera parameters are used
to project the pixel coordinates of the balls onto the checker-
board (Section II-C). Then, the checkerboard coordinates are
transformed into robot coordinates (Section II-D). A slight
adjustment is made for the height of the ball (Section II-F).
Inverse kinematics is used to send the robot to pick up the
ball (Section II-B). And finally, the arm drops the ball off
in the appropriate delivery zone based on its color. With all
these steps combined, we finally had a fully-fledged design
for picking up and sorting the colored balls.

All of the movements were implemented using joint space
cubic trajectories. This was done over task space and/or quintic
trajectories because they were computationally faster. The
added benefits of smoother acceleration or moving the end-
effector in straight lines weren’t necessary for our use cases.

III. RESULTS

The methods outlined in this paper resulted in a very
successful pick-and-place robot. In addition to this paper, a
video was made to document the development of our arm,
which can be seen here.

Our arm was successfully able to separate red, orange,
yellow, green, and gray balls consistently in a variety of
different lighting conditions. It was also able to process an
arbitrary number of balls so long as they fit onto the workspace
with sufficient room for the end-effector motion.

Additionally, we were also able to implement live tracking
of moving targets. By using a tweaked version of our vision
pipeline, we were able to speed up the image processing to
allow our robot to dynamically track moving balls and pick
them up once they stopped moving.

IV. DISCUSSION

Completing this project gave us a glimpse into current and
future applications for pick-and-place robotic manipulators.
Robots similar to the OpenMANIPULATOR-X are being used
in a multitude of other fields. For example, there are many
potential uses for such robots in the fields of manufacturing,
packaging, automotive, aerospace, healthcare, and even agri-
culture.

Pick-and-place robots have countless benefits that contribute
to their efficiency in these fields. Most notably, these robots are
capable of increased and continuous productivity. In compari-
son to a human performing manual labor, a robot is much more
efficient and productive. Robots are able to perform actions
with increased precision and accuracy. They are programmed
to complete repeatable tasks and are especially practical in
the fields of electronics manufacturing and pharmaceuticals,
where small components require the utmost accuracy during
assembly. This results in increased product quality and in turn,
increased customer satisfaction.

Another benefit of large-scale pick-and-place robotics is
their adaptability and versatility. Interfaces for industrial robots
are made to be relatively simple to program, and because of
this, a different end-effector or different programming allows
for a robot to be easily adapted for the task at hand. A
robotic manipulator designed for assembling small electronic
components could be altered to move and package boxes, and
then altered again to transport fragile chemical equipment.

Increased versatility, accuracy, and reliability result in in-
creased throughput, reduced cycle time, and heightened cost-
efficiency. These aspects are desirable for businesses and com-
panies in every field. The culmination of these characteristics
and the continual improvement of robotic manipulators shows
the increasing desire for automation in a plethora of fields.

Although sorting colored balls is a relatively simple task in
the general sense, working with the OpenMANIPULATOR-X
robotic arm and completing this project helped us learn about
the great benefits of robotic manipulators.

V. CONCLUSION

Throughout this project, we were able to explore and apply
a variety of techniques related to robotic manipulators. These
topics included forward and inverse kinematics, trajectory
and path generation, differential kinematics, and computer
vision. We began by solving for forward and inverse kinematic
solutions of our arm. We then calibrated our camera using
MATLAB’s Camera Calibrator app to remove fisheye distor-
tion, allowing for accurate conversion of pixel coordinates to
world coordinates. Next, we used the transformation matrix
between the checkerboard and robot to transform coordinates
into the frame of the robot. We then developed an image
processing pipeline complete with brightness equalization,
distortion correction, image masking, circle detection, object
classification. Lastly, we applied object localization to correct
for the height of the balls. With everything combined, we were
left with our very own pick-and-place robotic manipulator
(Fig. 14).

Fig. 14: Our Pick-and-Place Robot in Action

REFERENCES

[1] Robotis. OpenMANIPULATOR-X Overview, https://emanual.robotis.
com/docs/en/platform/openmanipulator x/overview/

[2] ELP USB Security Camera Low Light 1080P Sony IMX323 HD Sensor
H.264 Voice Recording Pinhole Spy Camera For Video Conference.
https://webcamerausb.com

[3] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” 1955.

https://youtu.be/f69PbA9I6qY?si=j5rj8iyJs0S9OqjG
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://www.webcamerausb.com/elp-usb-security-camera-low-light-1080p-sony-imx323-hd-sensor-h264-voice-recording-pinhole-spy-camera-for-video-conference-p-236.html

	Introduction
	Methodology
	Forward Kinematics
	Inverse Kinematics
	Camera Calibration
	Camera-Robot Transformation
	Object Detection and Classification
	Brightness Equalization
	Undistortion
	Image Masking
	Identifying Circles
	Classifying Circles by Color

	Object Localization
	Pick-and-Place

	Results
	Discussion
	Conclusion
	References

